Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hum Evol ; 64(1): 93-108, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23219163

ABSTRACT

This paper presents an analysis of metatarsal torsion in apes, cercopithecoids and humans, compares australopiths with these species, and discusses their inferred foot morphology and function relative to prehensility, arboreality and the presence or absence of a longitudinal arch. Our results show that locomotor modes are reflected in metatarsal torsion values. Apes, which climb vertically with their foot inverted, have hallucal metatarsal heads that are turned toward the other toes and lateral toes that are inverted. Cercopithecoids, which tend to orient their feet in an axis more parallel to the line of motion, present signs of prehensility by having inverted 2nd metatarsals that oppose the hallux, while their two lateral-most metatarsals are strongly everted. Humans, with their rigid feet and longitudinal arches, have all toes that present their plantar surface toward the ground, resulting in hallucal and 2nd metatarsals that are relatively untwisted and the others that are strongly everted. Humans are different from all taxa only for the 2nd and 3rd metatarsal. It is hypothesized that the untwisted 2nd metatarsal reflects the lack of digit opposability of the medial foot and the strongly everted 3rd metatarsal reflects the longitudinal arch. Australopithecus afarensis was characterized by an everted lateral foot, the prerequisite for the development, but not necessarily an indicator, of a longitudinal arch. In Australopithecus africanus, torsion of fragmentary and complete 1st, 2nd, 3rd and 5th metatarsals suggest that the species did not have a foot with monkey- or ape-like prehensile capabilities and did not have a human-like longitudinal arch. In the Swartkrans remains, torsion is consistent with an unprehensile foot. The morphology of the fossils indicates that there was strong selection to orient the plantar surface of the toes facing the ground at the expense of a grasping foot and inversion ability.


Subject(s)
Cercopithecidae/anatomy & histology , Cercopithecidae/physiology , Hominidae/anatomy & histology , Hominidae/physiology , Metatarsal Bones/anatomy & histology , Metatarsal Bones/physiology , Animals , Anthropology, Physical , Biomechanical Phenomena/physiology , Fossils , Humans , Locomotion/physiology , Posture/physiology
2.
J Hum Evol ; 63(1): 1-51, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22652491

ABSTRACT

Renewed fieldwork at Hadar, Ethiopia, from 1990 to 2007, by a team based at the Institute of Human Origins, Arizona State University, resulted in the recovery of 49 new postcranial fossils attributed to Australopithecus afarensis. These fossils include elements from both the upper and lower limbs as well as the axial skeleton, and increase the sample size of previously known elements for A. afarensis. The expanded Hadar sample provides evidence of multiple new individuals that are intermediate in size between the smallest and largest individuals previously documented, and so support the hypothesis that a single dimorphic species is represented. Consideration of the functional anatomy of the new fossils supports the hypothesis that no functional or behavioral differences need to be invoked to explain the morphological variation between large and small A. afarensis individuals. Several specimens provide important new data about this species, including new vertebrae supporting the hypothesis that A. afarensis may have had a more human-like thoracic form than previously appreciated, with an invaginated thoracic vertebral column. A distal pollical phalanx confirms the presence of a human-like flexor pollicis longus muscle in A. afarensis. The new fossils include the first complete fourth metatarsal known for A. afarensis. This specimen exhibits the dorsoplantarly expanded base, axial torsion and domed head typical of humans, revealing the presence of human-like permanent longitudinal and transverse arches and extension of the metatarsophalangeal joints as in human-like heel-off during gait. The new Hadar postcranial fossils provide a more complete picture of postcranial functional anatomy, and individual and temporal variation within this sample. They provide the basis for further in-depth analyses of the behavioral and evolutionary significance of A. afarensis anatomy, and greater insight into the biology and evolution of these early hominins.


Subject(s)
Bone and Bones/anatomy & histology , Fossils , Hominidae/anatomy & histology , Anatomy, Comparative , Animals , Biological Evolution , Ethiopia , Female , Humans , Male
3.
Am J Phys Anthropol ; 139(2): 154-71, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19012328

ABSTRACT

Postcranial skeletal variation among Plio-Pleistocene hominins has implications for taxonomy and locomotor adaptation. Although sample size constraints make interspecific comparisons difficult, postcranial differences between Australopithecus afarensis and Australopithecus africanus have been reported (McHenry and Berger: J Hum Evol 35 1998 1-22; Richmond et al.: J Hum Evol 43 [2002] 529-548; Green et al.: J Hum Evol 52 2007 187-200). Additional evidence indicates that the early members of the genus Homo show morphology like recent humans (e.g., Walker and Leakey: The Nariokotome Homo erectus skeleton. Cambridge: Harvard, 1993). Using a larger fossil sample than previous studies and novel methods, the early hominin proximal femur is newly examined to determine whether new data alter the current view of femoral evolution and inform the issue of interspecific morphological variation among australopiths. Two- and three-dimensional data are collected from large samples of recent humans, Pan, Gorilla, and Pongo and original fossil femora of Australopithecus, Paranthropus, and femora of African fossil Homo. The size-adjusted shape data are analyzed using principal components, thin plate spline analysis, and canonical variate analysis to assess shape variation. The results indicate that femora of fossil Homo are most similar to modern humans but share a low neck-shaft angle (NSA) with australopiths. Australopiths as a group have ape-like greater trochanter morphology. A. afarensis differs from P. robustus and A. africanus in attributes of the neck and NSA. However, interspecific femoral variation is low and australopiths are generally morphologically similar. Although the differences are not dramatic, when considered in combination with other postcranial evidence, the adaptive differences among australopiths in craniodental morphology may have parallels in the postcranium.


Subject(s)
Femur/anatomy & histology , Fossils , Hominidae/anatomy & histology , Animals , Body Weights and Measures , Humans , Principal Component Analysis , Species Specificity
4.
J Anat ; 210(2): 170-85, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17310545

ABSTRACT

As part of the hip joint, the proximal femur is an integral locomotor component. Although a link between locomotion and the morphology of some aspects of the proximal femur has been identified, inclusive shapes of this element have not been compared among behaviourally heterogeneous hominoids. Previous analyses have partitioned complex proximal femoral morphology into discrete features (e.g. head, neck, greater trochanter) to facilitate conventional linear measurements. In this study, three-dimensional geometric morphometrics are used to examine the shape of the proximal femur in hominoids to determine whether femoral shape co-varies with locomotor category. Fourteen landmarks are recorded on adult femora of Homo, Pan, Gorilla, Pongo and Hylobates. Generalized Procrustes analysis (GPA) is used to adjust for position, orientation and scale among landmark configurations. Principal components analysis is used to collapse and compare variation in residuals from GPA, and thin-plate spline analysis is used to visualize shape change among taxa. The results indicate that knucklewalking African apes are similar to one another in femoral shape, whereas the more suspensory Asian apes diverge from the African ape pattern. The shape of the human and orangutan proximal femur converge, a result that is best explained in terms of the distinct requirements for locomotion in each group. These findings suggest that the shape of the proximal femur is brought about primarily by locomotor behaviour.


Subject(s)
Femur/anatomy & histology , Primates/anatomy & histology , Adult , Animals , Female , Gait , Gorilla gorilla , Hominidae , Humans , Hylobates , Locomotion , Male , Pan troglodytes , Pongo pygmaeus
5.
J Hum Evol ; 51(3): 217-27, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16712903

ABSTRACT

The degree of size and shape variation in the A. afarensis fossil sample has been interpreted in a variety of ways. Size variation has been described as exceeding that of extant hominoids, similar to that of strongly sexually dimorphic hominoids, and best matched to modern humans. The degree of shape variation has been characterized both as great and negligible. Recent fieldwork has increased the proximal femoral sample, providing new data with which to examine variation. The proximal femur of A. afarensis is analyzed in a comparative framework in order to gauge the magnitude of size and shape variation in this element. Seven of the best-preserved A. afarensis proximal femora contribute to the analysis (A.L. 128-1, A.L. 152-2, A.L. 211-1, A.L. 288-1ap, A.L. 333-3, A.L. 333-123, A.L. 827-1). Comparative samples from Pan, Pongo, Gorilla, and Homo provide context for interpreting variation among the fossils. The coefficient of variation (CV) of linear measurements is used to estimate size variation. Bootstrap resampling of CVs from extant hominoids provides distributions for comparison to A. afarensis CVs. Ratios of linear measurements provide scale-free shape variables that are used in pairwise comparisons. The Euclidean distance between pairs of A. afarensis are compared to the Euclidean distances between extant hominoid pairs. As found in some earlier analyses, size variation in A. afarensis is accommodated best in gorillas and orangutans. The magnitude of difference in shape between A. afarensis pairs is exceeded by most taxa, indicating that shape variation is not extreme. These general findings are contradicted by a few instances of excessive size and shape variation. These are uncharacteristic results and could point to temporal bias, although other alternatives are explored. The signal from the proximal femur is that size variation in A. afarensis is like that of the strongly sexually dimorphic apes, and shape variation is well within the range of most hominoids irrespective of their degree of size dimorphism.


Subject(s)
Femur/anatomy & histology , Hominidae/anatomy & histology , Animals , Anthropology, Physical , Female , Fossils , Genetic Variation , Male , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL