Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Elife ; 132024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470232

ABSTRACT

The sense of direction is critical for survival in changing environments and relies on flexibly integrating self-motion signals with external sensory cues. While the anatomical substrates involved in head direction (HD) coding are well known, the mechanisms by which visual information updates HD representations remain poorly understood. Retrosplenial cortex (RSC) plays a key role in forming coherent representations of space in mammals and it encodes a variety of navigational variables, including HD. Here, we use simultaneous two-area tetrode recording to show that RSC HD representation is nearly synchronous with that of the anterodorsal nucleus of thalamus (ADn), the obligatory thalamic relay of HD to cortex, during rotation of a prominent visual cue. Moreover, coordination of HD representations in the two regions is maintained during darkness. We further show that anatomical and functional connectivity are consistent with a strong feedforward drive of HD information from ADn to RSC, with anatomically restricted corticothalamic feedback. Together, our results indicate a concerted global HD reference update across cortex and thalamus.


Subject(s)
Anterior Thalamic Nuclei , Animals , Mice , Gyrus Cinguli , Cerebral Cortex , Cues , Rotation , Mammals
2.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693443

ABSTRACT

Behavioral neuroscience faces two conflicting demands: long-duration recordings from large neural populations and unimpeded animal behavior. To meet this challenge, we developed ONIX, an open-source data acquisition system with high data throughput (2GB/sec) and low closed-loop latencies (<1ms) that uses a novel 0.3 mm thin tether to minimize behavioral impact. Head position and rotation are tracked in 3D and used to drive active commutation without torque measurements. ONIX can acquire from combinations of passive electrodes, Neuropixels probes, head-mounted microscopes, cameras, 3D-trackers, and other data sources. We used ONIX to perform uninterrupted, long (~7 hours) neural recordings in mice as they traversed complex 3-dimensional terrain. ONIX allowed exploration with similar mobility as non-implanted animals, in contrast to conventional tethered systems which restricted movement. By combining long recordings with full mobility, our technology will enable new progress on questions that require high-quality neural recordings during ethologically grounded behaviors.

3.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993722

ABSTRACT

Recent developments in super-resolution microscopy have revolutionized the study of cell biology. However, dense tissues require exogenous protein expression for single cell morphological contrast. In the nervous system, many cell types and species of interest - particularly human - are not amenable to genetic modification and/or exhibit intricate anatomical specializations which make cellular delineation challenging. Here, we present a method for full morphological labeling of individual neurons from any species or cell type for subsequent cell-resolved protein analysis without genetic modification. Our method, which combines patch-clamp electrophysiology with epitope-preserving magnified analysis of proteome (eMAP), further allows for correlation of physiological properties with subcellular protein expression. We applied Patch2MAP to individual spiny synapses in human cortical pyramidal neurons and demonstrated that electrophysiological AMPA-to-NMDA receptor ratios correspond tightly to respective protein expression levels. Patch2MAP thus permits combined subcellular functional, anatomical, and proteomic analyses of any cell, opening new avenues for direct molecular investigation of the human brain in health and disease.

4.
J Clin Invest ; 133(5)2023 03 01.
Article in English | MEDLINE | ID: mdl-36602876

ABSTRACT

Cortical neural dynamics mediate information processing for the cerebral cortex, which is implicated in fundamental biological processes such as vision and olfaction, in addition to neurological and psychiatric diseases. Spontaneous pain is a key feature of human neuropathic pain. Whether spontaneous pain pushes the cortical network into an aberrant state and, if so, whether it can be brought back to a "normal" operating range to ameliorate pain are unknown. Using a clinically relevant mouse model of neuropathic pain with spontaneous pain-like behavior, we report that orofacial spontaneous pain activated a specific area within the primary somatosensory cortex (S1), displaying synchronized neural dynamics revealed by intravital two-photon calcium imaging. This synchronization was underpinned by local GABAergic interneuron hypoactivity. Pain-induced cortical synchronization could be attenuated by manipulating local S1 networks or clinically effective pain therapies. Specifically, both chemogenetic inhibition of pain-related c-Fos-expressing neurons and selective activation of GABAergic interneurons significantly attenuated S1 synchronization. Clinically effective pain therapies including carbamazepine and nerve root decompression could also dampen S1 synchronization. More important, restoring a "normal" range of neural dynamics through attenuation of pain-induced S1 synchronization alleviated pain-like behavior. These results suggest that spontaneous pain pushed the S1 regional network into a synchronized state, whereas reversal of this synchronization alleviated pain.


Subject(s)
Cerebral Cortex , Neuralgia , Animals , Mice , Interneurons/physiology , Neuralgia/genetics , Neuralgia/therapy , Neurons , Somatosensory Cortex
5.
Nature ; 612(7939): 323-327, 2022 12.
Article in English | MEDLINE | ID: mdl-36450984

ABSTRACT

Newly generated excitatory synapses in the mammalian cortex lack sufficient AMPA-type glutamate receptors to mediate neurotransmission, resulting in functionally silent synapses that require activity-dependent plasticity to mature. Silent synapses are abundant in early development, during which they mediate circuit formation and refinement, but they are thought to be scarce in adulthood1. However, adults retain a capacity for neural plasticity and flexible learning that suggests that the formation of new connections is still prevalent. Here we used super-resolution protein imaging to visualize synaptic proteins at 2,234 synapses from layer 5 pyramidal neurons in the primary visual cortex of adult mice. Unexpectedly, about 25% of these synapses lack AMPA receptors. These putative silent synapses were located at the tips of thin dendritic protrusions, known as filopodia, which were more abundant by an order of magnitude than previously believed (comprising about 30% of all dendritic protrusions). Physiological experiments revealed that filopodia do indeed lack AMPA-receptor-mediated transmission, but they exhibit NMDA-receptor-mediated synaptic transmission. We further showed that functionally silent synapses on filopodia can be unsilenced through Hebbian plasticity, recruiting new active connections into a neuron's input matrix. These results challenge the model that functional connectivity is largely fixed in the adult cortex and demonstrate a new mechanism for flexible control of synaptic wiring that expands the learning capabilities of the mature brain.


Subject(s)
Mammals , Records , Animals , Mice
6.
Neuron ; 110(9): 1532-1546.e4, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35180389

ABSTRACT

Synaptic NMDA receptors can produce powerful dendritic supralinearities that expand the computational repertoire of single neurons and their respective circuits. This form of supralinearity may represent a general principle for synaptic integration in thin dendrites. However, individual cortical neurons receive many diverse classes of input that may require distinct postsynaptic decoding schemes. Here, we show that sensory, motor, and thalamic inputs preferentially target basal, apical oblique, and distal tuft dendrites, respectively, in layer 5b pyramidal neurons of the mouse retrosplenial cortex, a visuospatial association area. These dendritic compartments exhibited differential expression of NMDA receptor-mediated supralinearity due to systematic changes in the AMPA-to-NMDA receptor ratio. Our results reveal a new schema for integration in cortical pyramidal neurons, in which dendrite-specific changes in synaptic receptors support input-localized decoding. This coexistence of multiple modes of dendritic integration in single neurons has important implications for synaptic plasticity and cortical computation.


Subject(s)
Pyramidal Cells , Receptors, N-Methyl-D-Aspartate , Animals , Cerebral Cortex/physiology , Dendrites/physiology , Mice , Pyramidal Cells/physiology , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
7.
Neuroscience ; 489: 185-199, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34116137

ABSTRACT

Decades of experimental and theoretical work support a now well-established theory that active dendritic processing contributes to the computational power of individual neurons. This theory is based on the high degree of electrical compartmentalization observed in the dendrites of single neurons in ex vivo preparations. Compartmentalization allows dendrites to conduct semi-independent operations on their inputs before final integration and output at the axon, producing a "network-in-a-neuron." However, recent in vivo functional imaging experiments in mouse cortex have reported surprisingly little evidence for strong dendritic compartmentalization. In this review, we contextualize these new findings and discuss their impact on the future of the field. Specifically, we consider how highly coordinated, and thus less compartmentalized, activity in soma and dendrites can contribute to cortical computations including nonlinear mixed selectivity, prediction/expectation, multiplexing, and credit assignment.


Subject(s)
Dendrites , Pyramidal Cells , Action Potentials/physiology , Animals , Dendrites/physiology , Mice , Neurons/physiology , Pyramidal Cells/physiology
8.
Nature ; 600(7888): 274-278, 2021 12.
Article in English | MEDLINE | ID: mdl-34759318

ABSTRACT

The biophysical properties of neurons are the foundation for computation in the brain. Neuronal size is a key determinant of single neuron input-output features and varies substantially across species1-3. However, it is unknown whether different species adapt neuronal properties to conserve how single neurons process information4-7. Here we characterize layer 5 cortical pyramidal neurons across 10 mammalian species to identify the allometric relationships that govern how neuronal biophysics change with cell size. In 9 of the 10 species, we observe conserved rules that control the conductance of voltage-gated potassium and HCN channels. Species with larger neurons, and therefore a decreased surface-to-volume ratio, exhibit higher membrane ionic conductances. This relationship produces a conserved conductance per unit brain volume. These size-dependent rules result in large but predictable changes in somatic and dendritic integrative properties. Human neurons do not follow these allometric relationships, exhibiting much lower voltage-gated potassium and HCN conductances. Together, our results in layer 5 neurons identify conserved evolutionary principles for neuronal biophysics in mammals as well as notable features of the human cortex.


Subject(s)
Biophysics , Cell Size , Cerebral Cortex/cytology , Mammals , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Animals , Cerebral Cortex/anatomy & histology , Cerebral Cortex/physiology , Dendrites/physiology , Electric Conductivity , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Male , Potassium Channels, Voltage-Gated/metabolism , Species Specificity
9.
Elife ; 92020 03 10.
Article in English | MEDLINE | ID: mdl-32154781

ABSTRACT

The process by which visual information is incorporated into the brain's spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information.


When moving through a city, people often use notable or familiar landmarks to help them navigate. Landmarks provide us with information about where we are and where we need to go next. But despite the ease with which we ­ and most other animals ­ use landmarks to find our way around, it remains unclear exactly how the brain makes this possible. One area that seems to have a key role is the retrosplenial cortex, which is located deep within the back of the brain in humans. This area becomes more active when animals use visual landmarks to navigate. It is also one of the first brain regions to be affected in Alzheimer's disease, which may help to explain why patients with this condition can become lost and disoriented, even in places they have been many times before. To find out how the retrosplenial cortex supports navigation, Fischer et al. measured its activity in mice exploring a virtual reality world. The mice ran through simulated corridors in which visual landmarks indicated where hidden rewards could be found. The activity of most neurons in the retrosplenial cortex was most strongly influenced by the mouse's position relative to the landmark; for example, some neurons were always active 10 centimeters after the landmark. In other experiments, when the landmarks were present but no longer indicated the location of a reward, the same neurons were much less active. Fischer et al. also measured the activity of the neurons when the mice were running with nothing shown on the virtual reality, and when they saw a landmark but did not run. Notably, the activity seen when the mice were using the landmarks to find rewards was greater than the sum of that recorded when the mice were just running or just seeing the landmark without a reward, making the "landmark response" an example of so-called supralinear processing. Fischer et al. showed that visual centers of the brain send information about landmarks to retrosplenial cortex. But only the latter adjusts its activity depending on whether the mouse is using that landmark to navigate. These findings provide the first evidence for a "landmark code" at the level of neurons and lay the foundations for studying impaired navigation in patients with Alzheimer's disease. By showing that retrosplenial cortex neurons combine different types of input in a supralinear fashion, the results also point to general principles for how neurons in the brain perform complex calculations.


Subject(s)
Gyrus Cinguli/physiology , Spatial Processing/physiology , Visual Perception/physiology , Animals , Behavior, Animal , Female , Male , Mice , Mice, Inbred C57BL
10.
J Neural Eng ; 17(2): 026044, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32074511

ABSTRACT

Tetrode arrays are a standard method for neuronal recordings in behaving animals, especially for chronic recordings of many neurons in freely-moving animals. OBJECTIVE: We sought to simplify tetrode drive designs with the aim of enabling building and implanting a 16-tetrode drive in a single day. APPROACH: Our design makes use of recently developed technologies to reduce the complexity of the drive while maintaining a low weight. MAIN RESULTS: The design presents an improvement over existing implants in terms of robustness, weight, and ease of use. We describe two variants: a 16 tetrode implant weighing ∼2 g for mice, bats, tree shrews and similar animals, and a 64 tetrode implant weighing ∼16 g for rats and similar animals. These designs were co-developed and optimized alongside a new class of drive-mounted feature-rich amplifier boards with ultra-thin radio-frequency tethers, as described in an upcoming paper (Newman, Zhang et al in prep). SIGNIFICANCE: This design significantly improves the data yield of chronic electrophysiology experiments.


Subject(s)
Neurons , Prostheses and Implants , Animals , Electrophysiological Phenomena , Mice , Rats
11.
J Neural Eng ; 17(2): 026040, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32074512

ABSTRACT

OBJECTIVE: Twisted wire probes (TWPs, e.g. stereotrodes and tetrodes) provide a cheap and reliable method for obtaining high quality, multiple single-unit neural recordings in freely moving animals. Despite their ubiquity, TWPs are constructed using a tedious procedure consisting of manually folding, turning, and fusing microwire. This imposes a significant labor burden on research personnel who use TWPs in their experiments. APPROACH: To address this issue, we created Twister3, an open-source microwire twisting machine. This machine features a quick-draw wire feeder that eliminates manual wire folding, an auto-aligning motor attachment mechanism which results in consistently straight probes, and a high speed motor for rapid probe turning. MAIN RESULTS: Twister3 greatly increases the speed and repeatability of constructing twisted microwire probes compared to existing options. Users with less than one hour of experience using the device were able to make ~70 tetrodes per hour, on average. It is cheap, well documented, and all associated designs and source code are open-source. SIGNIFICANCE: Twister3 significantly reduces the labor burden of creating high-quality TWPs so electrophysiologists can spend more of their time performing recordings rather than making probes. Therefore, this device is of interest to any lab performing TWP neural recordings, for example, using microdrives.


Subject(s)
Electrodes, Implanted , Animals
12.
Neuron ; 105(2): 237-245.e4, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31759808

ABSTRACT

Active amplification of organized synaptic inputs in dendrites can endow individual neurons with the ability to perform complex computations. However, whether dendrites in behaving animals perform independent local computations is not known. Such activity may be particularly important for complex behavior, where neurons integrate multiple streams of information. Head-restrained imaging has yielded important insights into cellular and circuit function, but this approach limits behavior and the underlying computations. We describe a method for full-featured 2-photon imaging in awake mice during free locomotion with volitional head rotation. We examine head direction and position encoding in simultaneously imaged apical tuft dendrites and their respective cell bodies in retrosplenial cortex, an area that encodes multi-modal navigational information. Activity in dendrites was not determined solely by somatic activity but reflected distinct navigational variables, fulfilling the requirements for dendritic computation. Our approach provides a foundation for studying sub-cellular processes during complex behaviors.


Subject(s)
Cell Body/physiology , Cerebral Cortex/physiology , Dendrites/physiology , Neuroimaging/methods , Optical Phenomena , Spatial Navigation/physiology , Action Potentials/physiology , Animals , Male , Mice
13.
Neuron ; 103(2): 235-241.e4, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31178115

ABSTRACT

Dendritic integration can expand the information-processing capabilities of neurons. However, the recruitment of active dendritic processing in vivo and its relationship to somatic activity remain poorly understood. Here, we use two-photon GCaMP6f imaging to simultaneously monitor dendritic and somatic compartments in the awake primary visual cortex. Activity in layer 5 pyramidal neuron somata and distal apical trunk dendrites shows surprisingly high functional correlation. This strong coupling persists across neural activity levels and is unchanged by visual stimuli and locomotion. Ex vivo combined somato-dendritic patch-clamp and GCaMP6f recordings indicate that dendritic signals specifically reflect local electrogenesis triggered by dendritic inputs or high-frequency bursts of somatic action potentials. In contrast to the view that dendrites are only sparsely recruited under highly specific conditions in vivo, our results provide evidence that active dendritic integration is a widespread and intrinsic feature of cortical computation.


Subject(s)
Action Potentials/physiology , Calcium/metabolism , Dendrites/physiology , Visual Cortex/cytology , Visual Cortex/physiology , Animals , In Vitro Techniques , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics , Patch-Clamp Techniques , Photic Stimulation , Pyramidal Cells , Retinol-Binding Proteins, Plasma/genetics , Retinol-Binding Proteins, Plasma/metabolism
14.
Front Cell Neurosci ; 13: 555, 2019.
Article in English | MEDLINE | ID: mdl-32009901

ABSTRACT

Daily exposure of awake mice to a phase-reversing visual grating stimulus leads to enhancement of the visual-evoked potential (VEP) in layer 4 of the primary visual cortex (V1). This stimulus-selective response potentiation (SRP) resembles and shares mechanistic requirements with canonical long-term synaptic potentiation (LTP). However, it remains to be determined how this augmentation of a population response translates into altered neuronal activity of individual V1 neurons. To address this question, we performed longitudinal calcium imaging of layer 4 excitatory neurons in V1 and tracked changes associated with the induction and expression of SRP. We found no evidence for a net change in the fraction of visually responsive neurons as the stimulus became familiar. However, endoscopic calcium imaging of layer 4 principal neurons revealed that somatic calcium transients in response to phase-reversals of the familiar visual stimulus are reduced and undergo strong within-session adaptation. Conversely, neuropil calcium responses and VEPs are enhanced during familiar stimulus viewing, and the VEPs show reduced within-session adaptation. Consistent with the exquisite selectivity of SRP, the plasticity of cellular responses to phase-reversing gratings did not translate into altered orientation selectivity to drifting gratings. Our findings suggest a model in which augmentation of fast, short-latency synaptic (dendritic) responses, manifested as enhanced layer 4 VEPs, recruits inhibition to suppress cellular activity. Reduced cellular activity to the familiar stimulus may account for the behavioral correlate of SRP, orientation-selective long-term habituation.

15.
Cell ; 175(3): 643-651.e14, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340039

ABSTRACT

The biophysical features of neurons shape information processing in the brain. Cortical neurons are larger in humans than in other species, but it is unclear how their size affects synaptic integration. Here, we perform direct electrical recordings from human dendrites and report enhanced electrical compartmentalization in layer 5 pyramidal neurons. Compared to rat dendrites, distal human dendrites provide limited excitation to the soma, even in the presence of dendritic spikes. Human somas also exhibit less bursting due to reduced recruitment of dendritic electrogenesis. Finally, we find that decreased ion channel densities result in higher input resistance and underlie the lower coupling of human dendrites. We conclude that the increased length of human neurons alters their input-output properties, which will impact cortical computation. VIDEO ABSTRACT.


Subject(s)
Dendrites/physiology , Pyramidal Cells/physiology , Action Potentials , Adult , Animals , Female , Humans , Ion Channels/metabolism , Male , Pyramidal Cells/cytology , Rats , Rats, Sprague-Dawley , Species Specificity , Synaptic Potentials
16.
Nat Neurosci ; 21(11): 1583-1590, 2018 11.
Article in English | MEDLINE | ID: mdl-30349100

ABSTRACT

Animals strategically scan the environment to form an accurate perception of their surroundings. Here we investigated the neuronal representations that mediate this behavior. Ca2+ imaging and selective optogenetic manipulation during an active sensing task reveals that layer 5 pyramidal neurons in the vibrissae cortex produce a diverse and distributed representation that is required for mice to adapt their whisking motor strategy to changing sensory cues. The optogenetic perturbation degraded single-neuron selectivity and network population encoding through a selective inhibition of active dendritic integration. Together the data indicate that active dendritic integration in pyramidal neurons produces a nonlinearly mixed network representation of joint sensorimotor parameters that is used to transform sensory information into motor commands during adaptive behavior. The prevalence of the layer 5 cortical circuit motif suggests that this is a general circuit computation.


Subject(s)
Behavior, Animal/physiology , Dendrites/physiology , Neocortex/physiology , Nerve Net/physiology , Neurons/physiology , Adaptation, Psychological/physiology , Animals , Male , Mice , Somatosensory Cortex/physiology , Vibrissae/physiology
17.
Neuron ; 97(1): 75-82.e3, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29249288

ABSTRACT

Synapses are the fundamental units of information processing in the mammalian brain. Much of our understanding of their functional properties comes from voltage-clamp analysis, the predominant approach for investigating synaptic physiology. Here, we reveal that voltage clamp is completely ineffective for most excitatory synapses due to spine electrical compartmentalization. Under local dendritic voltage clamp, single-spine activation produced large spine head depolarizations that severely distorted measurements and recruited voltage-dependent channels. To overcome these voltage-clamp errors, we developed an approach to provide new, accurate measurements of synaptic conductance. Single-synapse AMPA conductance was much larger than previously appreciated, producing saturation effects on synaptic currents. We conclude that electrical compartmentalization profoundly shapes both synaptic function and how that function can be assessed with electrophysiological methods.


Subject(s)
Dendritic Spines/physiology , Patch-Clamp Techniques/methods , Pyramidal Cells/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Male , Membrane Potentials/physiology , Rats , Rats, Sprague-Dawley
18.
Nature ; 549(7673): 482-487, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28902835

ABSTRACT

Viral infection during pregnancy is correlated with increased frequency of neurodevelopmental disorders, and this is studied in mice prenatally subjected to maternal immune activation (MIA). We previously showed that maternal T helper 17 cells promote the development of cortical and behavioural abnormalities in MIA-affected offspring. Here we show that cortical abnormalities are preferentially localized to a region encompassing the dysgranular zone of the primary somatosensory cortex (S1DZ). Moreover, activation of pyramidal neurons in this cortical region was sufficient to induce MIA-associated behavioural phenotypes in wild-type animals, whereas reduction in neural activity rescued the behavioural abnormalities in MIA-affected offspring. Sociability and repetitive behavioural phenotypes could be selectively modulated according to the efferent targets of S1DZ. Our work identifies a cortical region primarily, if not exclusively, centred on the S1DZ as the major node of a neural network that mediates behavioural abnormalities observed in offspring exposed to maternal inflammation.


Subject(s)
Behavior, Animal , Inflammation/physiopathology , Mental Disorders/etiology , Pregnancy Complications, Infectious/physiopathology , Prenatal Exposure Delayed Effects/psychology , Th17 Cells , Animals , Female , Male , Mental Disorders/psychology , Mice , Mothers , Phenotype , Pregnancy , Pyramidal Cells/pathology , Pyramidal Cells/physiology , Social Behavior , Somatosensory Cortex/abnormalities , Somatosensory Cortex/pathology , Somatosensory Cortex/physiopathology , Th17 Cells/physiology
19.
J Neurosci ; 35(3): 1024-37, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25609619

ABSTRACT

The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons.


Subject(s)
Dendrites/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , Neocortex/physiology , Pyramidal Cells/physiology , Action Potentials/physiology , Animals , Excitatory Postsynaptic Potentials/physiology , Male , Neocortex/cytology , Patch-Clamp Techniques , Pyramidal Cells/cytology , Rats , Rats, Wistar , Synapses/physiology
20.
Neuron ; 79(3): 516-29, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23931999

ABSTRACT

Active dendritic synaptic integration enhances the computational power of neurons. Such nonlinear processing generates an object-localization signal in the apical dendritic tuft of layer 5B cortical pyramidal neurons during sensory-motor behavior. Here, we employ electrophysiological and optical approaches in brain slices and behaving animals to investigate how excitatory synaptic input to this distal dendritic compartment influences neuronal output. We find that active dendritic integration throughout the apical dendritic tuft is highly compartmentalized by voltage-gated potassium (KV) channels. A high density of both transient and sustained KV channels was observed in all apical dendritic compartments. These channels potently regulated the interaction between apical dendritic tuft, trunk, and axosomatic integration zones to control neuronal output in vitro as well as the engagement of dendritic nonlinear processing in vivo during sensory-motor behavior. Thus, KV channels dynamically tune the interaction between active dendritic integration compartments in layer 5B pyramidal neurons to shape behaviorally relevant neuronal computations.


Subject(s)
Dendrites/physiology , Potassium Channels/metabolism , Pyramidal Cells/ultrastructure , Somatosensory Cortex/cytology , Alkaloids/pharmacology , Animals , Barium/pharmacology , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Dendrites/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Glutamic Acid/pharmacology , In Vitro Techniques , Indoles/pharmacology , Male , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Probability , Quinolines/pharmacology , Rats , Rats, Wistar , Time Factors , Valine/analogs & derivatives , Valine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...