Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(7): 4491-4502, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37002872

ABSTRACT

The extracellular signal-regulated kinase 5 (ERK5) signaling pathway is one of four conventional mitogen-activated protein (MAP) kinase pathways. Genetic perturbation of ERK5 has suggested that modulation of ERK5 activity may have therapeutic potential in cancer chemotherapy. This Miniperspective examines the evidence for ERK5 as a drug target in cancer, the structure of ERK5, and the evolution of structurally distinct chemotypes of ERK5 kinase domain inhibitors. The emerging complexities of ERK5 pharmacology are discussed, including the confounding phenomenon of paradoxical ERK5 activation by small-molecule ERK5 inhibitors. The impact of the recent development and biological evaluation of potent and selective bifunctional degraders of ERK5 and future opportunities in ERK modulation are also explored.


Subject(s)
MAP Kinase Signaling System , Signal Transduction , Signal Transduction/physiology , Phosphorylation , Mitogen-Activated Protein Kinase 7 , Protein Processing, Post-Translational
2.
RSC Med Chem ; 13(12): 1460-1475, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36561076

ABSTRACT

In recent years, the development of targeted covalent inhibitors has gained popularity around the world. Specific groups (electrophilic warheads) form irreversible bonds with the side chain of nucleophilic amino acid residues, thus changing the function of biological targets such as proteins. Since the first targeted covalent inhibitor was disclosed in the 1990s, great efforts have been made to develop covalent ligands from known reversible leads or drugs by addition of tolerated electrophilic warheads. However, high reactivity and "off-target" toxicity remain challenging issues. This review covers the concept of targeted covalent inhibition to diseases, discusses traditional and interdisciplinary strategies of cysteine-focused covalent drug discovery, and exhibits newly disclosed electrophilic warheads majorly targeting the cysteine residue. Successful applications to address the challenges of designing effective covalent drugs are also introduced.

3.
J Med Chem ; 65(9): 6513-6540, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35468293

ABSTRACT

The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and in vitro pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure.


Subject(s)
Mitogen-Activated Protein Kinase 7 , Pyrroles , Cell Proliferation , Pyrroles/pharmacology
4.
J Med Chem ; 64(14): 10001-10018, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34212719

ABSTRACT

NF-κB-inducing kinase (NIK) is a key enzyme in the noncanonical NF-κB pathway, of interest in the treatment of a variety of diseases including cancer. Validation of NIK as a drug target requires potent and selective inhibitors. The protein contains a cysteine residue at position 444 in the back pocket of the active site, unique within the kinome. Analysis of existing inhibitor scaffolds and early structure-activity relationships (SARs) led to the design of C444-targeting covalent inhibitors based on alkynyl heterocycle warheads. Mass spectrometry provided proof of the covalent mechanism, and the SAR was rationalized by computational modeling. Profiling of more potent analogues in tumor cell lines with constitutively activated NIK signaling induced a weak antiproliferative effect, suggesting that kinase inhibition may have limited impact on cancer cell growth. This study shows that alkynyl heterocycles are potential cysteine traps, which may be employed where common Michael acceptors, such as acrylamides, are not tolerated.


Subject(s)
Alkynes/pharmacology , Cysteine/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Alkynes/chemical synthesis , Alkynes/chemistry , Cysteine/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , NF-kappaB-Inducing Kinase
5.
J Med Chem ; 64(7): 4071-4088, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33761253

ABSTRACT

Inhibition of murine double minute 2 (MDM2)-p53 protein-protein interaction with small molecules has been shown to reactivate p53 and inhibit tumor growth. Here, we describe rational, structure-guided, design of novel isoindolinone-based MDM2 inhibitors. MDM2 X-ray crystallography, quantum mechanics ligand-based design, and metabolite identification all contributed toward the discovery of potent in vitro and in vivo inhibitors of the MDM2-p53 interaction with representative compounds inducing cytostasis in an SJSA-1 osteosarcoma xenograft model following once-daily oral administration.


Subject(s)
Antineoplastic Agents/pharmacology , Isoindoles/pharmacology , Osteosarcoma/drug therapy , Protein Multimerization/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Bone Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Stability , Female , Humans , Isoindoles/chemical synthesis , Isoindoles/metabolism , Macaca fascicularis , Male , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/metabolism , Molecular Structure , Protein Binding , Structure-Activity Relationship , Xenograft Model Antitumor Assays
6.
Diabetes Obes Metab ; 22(11): 1985-1994, 2020 11.
Article in English | MEDLINE | ID: mdl-32519798

ABSTRACT

AIM: To test the hypothesis that glucokinase activators (GKAs) induce hepatic adaptations that alter intra-hepatocyte metabolite homeostasis. METHODS: C57BL/6 mice on a standard rodent diet were treated with a GKA (AZD1656) acutely or chronically. Hepatocytes were isolated from the mice after 4 or 8 weeks of treatment for analysis of cellular metabolites and gene expression in response to substrate challenge. RESULTS: Acute exposure of mice to AZD1656 or a liver-selective GKA (PF-04991532), before a glucose tolerance test, or challenge of mouse hepatocytes with GKAs ex vivo induced various Carbohydrate response element binding protein (ChREBP) target genes, including Carbohydrate response element binding protein beta isoform (ChREBP-ß), Gckr and G6pc. Both glucokinase activation and ChREBP target gene induction by PF-04991532 were dependent on the chirality of the molecule, confirming a mechanism linked to glucokinase activation. Hepatocytes from mice treated with AZD1656 for 4 or 8 weeks had lower basal glucose 6-phosphate levels and improved ATP homeostasis during high substrate challenge. They also had raised basal ChREBP-ß mRNA and AMPK-α mRNA (Prkaa1, Prkaa2) and progressively attenuated substrate induction of some ChREBP target genes and Prkaa1 and Prkaa2. CONCLUSIONS: Chronic GKA treatment of C57BL/6 mice for 8 weeks activates liver ChREBP and improves the resilience of hepatocytes to compromised ATP homeostasis during high-substrate challenge. These changes are associated with raised mRNA levels of ChREBP-ß and both catalytic subunits of AMP-activated protein kinase.


Subject(s)
Glucokinase , Liver , Adenosine Triphosphate , Animals , Carrier Proteins/genetics , Glucokinase/genetics , Glucokinase/metabolism , Glucose , Glucose-6-Phosphate , Hepatocytes/metabolism , Homeostasis , Liver/metabolism , Mice , Mice, Inbred C57BL , Response Elements
7.
RSC Med Chem ; 11(6): 707-731, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-33479670

ABSTRACT

Renewed interest in covalent inhibitors of enzymes implicated in disease states has afforded several agents targeted at protein kinases of relevance to cancers. We now report the design, synthesis and biological evaluation of 6-ethynylpurines that act as covalent inhibitors of Nek2 by capturing a cysteine residue (Cys22) close to the catalytic domain of this protein kinase. Examination of the crystal structure of the non-covalent inhibitor 3-((6-cyclohexylmethoxy-7H-purin-2-yl)amino)benzamide in complex with Nek2 indicated that replacing the alkoxy with an ethynyl group places the terminus of the alkyne close to Cys22 and in a position compatible with the stereoelectronic requirements of a Michael addition. A series of 6-ethynylpurines was prepared and a structure activity relationship (SAR) established for inhibition of Nek2. 6-Ethynyl-N-phenyl-7H-purin-2-amine [IC50 0.15 µM (Nek2)] and 4-((6-ethynyl-7H-purin-2-yl)amino)benzenesulfonamide (IC50 0.14 µM) were selected for determination of the mode of inhibition of Nek2, which was shown to be time-dependent, not reversed by addition of ATP and negated by site directed mutagenesis of Cys22 to alanine. Replacement of the ethynyl group by ethyl or cyano abrogated activity. Variation of substituents on the N-phenyl moiety for 6-ethynylpurines gave further SAR data for Nek2 inhibition. The data showed little correlation of activity with the nature of the substituent, indicating that after sufficient initial competitive binding to Nek2 subsequent covalent modification of Cys22 occurs in all cases. A typical activity profile was that for 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide [IC50 0.06 µM (Nek2); GI50 (SKBR3) 2.2 µM] which exhibited >5-10-fold selectivity for Nek2 over other kinases; it also showed > 50% growth inhibition at 10 µM concentration against selected breast and leukaemia cell lines. X-ray crystallographic analysis confirmed that binding of the compound to the Nek2 ATP-binding site resulted in covalent modification of Cys22. Further studies confirmed that 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide has the attributes of a drug-like compound with good aqueous solubility, no inhibition of hERG at 25 µM and a good stability profile in human liver microsomes. It is concluded that 6-ethynylpurines are promising agents for cancer treatment by virtue of their selective inhibition of Nek2.

8.
Eur J Med Chem ; 178: 530-543, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31212132

ABSTRACT

Extracellular regulated kinase 5 (ERK5) signalling has been implicated in driving a number of cellular phenotypes including endothelial cell angiogenesis and tumour cell motility. Novel ERK5 inhibitors were identified using high throughput screening, with a series of pyrrole-2-carboxamides substituted at the 4-position with an aroyl group being found to exhibit IC50 values in the micromolar range, but having no selectivity against p38α MAP kinase. Truncation of the N-substituent marginally enhanced potency (∼3-fold) against ERK5, but importantly attenuated inhibition of p38α. Systematic variation of the substituents on the aroyl group led to the selective inhibitor 4-(2-bromo-6-fluorobenzoyl)-N-(pyridin-3-yl)-1H-pyrrole-2-carboxamide (IC50 0.82 µM for ERK5; IC50 > 120 µM for p38α). The crystal structure (PDB 5O7I) of this compound in complex with ERK5 has been solved. This compound was orally bioavailable and inhibited bFGF-driven Matrigel plug angiogenesis and tumour xenograft growth. The selective ERK5 inhibitor described herein provides a lead for further development into a tool compound for more extensive studies seeking to examine the role of ERK5 signalling in cancer and other diseases.


Subject(s)
Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 7/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Transcription Factors/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Biological Availability , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Mice , Mice, Nude , Mitogen-Activated Protein Kinase 14/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Nuclear Proteins/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Transcription Factors/metabolism
9.
Eur J Med Chem ; 143: 1139-1147, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29233590

ABSTRACT

Survival of the human malaria parasite Plasmodium falciparum is dependent on pantothenate (vitamin B5), a precursor of the fundamental enzyme cofactor coenzyme A. CJ-15,801, an enamide analogue of pantothenate isolated from the fungus Seimatosporium sp. CL28611, was previously shown to inhibit P. falciparum proliferation in vitro by targeting pantothenate utilization. To inform the design of next generation analogues, we set out to synthesize and test a series of synthetic enamide-bearing pantothenate analogues. We demonstrate that conservation of the R-pantoyl moiety and the trans-substituted double bond of CJ-15,801 is important for the selective, on-target antiplasmodial effect, while replacement of the carboxyl group is permitted, and, in one case, favored. Additionally, we show that the antiplasmodial potency of CJ-15,801 analogues that retain the R-pantoyl and trans-substituted enamide moieties correlates with inhibition of P. falciparum pantothenate kinase (PfPanK)-catalyzed pantothenate phosphorylation, implicating the interaction with PfPanK as a key determinant of antiplasmodial activity.


Subject(s)
Antimalarials/pharmacology , Pantothenic Acid/analogs & derivatives , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Pantothenic Acid/chemical synthesis , Pantothenic Acid/chemistry , Pantothenic Acid/pharmacology , Parasitic Sensitivity Tests , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plasmodium falciparum/enzymology , Structure-Activity Relationship
10.
Clin Chem ; 64(2): 346-354, 2018 02.
Article in English | MEDLINE | ID: mdl-29038156

ABSTRACT

BACKGROUND: The emergence of novel psychoactive substances (NPS), particularly synthetic cannabinoid receptor agonists (SCRA), has involved hundreds of potentially harmful chemicals in a highly dynamic international market challenging users', clinicians', and regulators' understanding of what circulating substances are causing harm. We describe a toxicovigilance system for NPS that predicted the UK emergence and identified the clinical toxicity caused by novel indole and indazole carboxylate SCRA. METHODS: To assist early accurate identification, we synthesized 5 examples of commercially unavailable indole and indazole carboxylate SCRA (FUB-NPB-22, 5F-NPB-22, 5F-SDB-005, FUB-PB-22, NM-2201). We analyzed plasma and urine samples from 160 patients presenting to emergency departments with severe toxicity after suspected NPS use during 2015 to 2016 for these and other NPS using data-independent LC-MS/MS. RESULTS: We successfully synthesized 5 carboxylate SCRAs using established synthetic and analytical chemistry methodologies. We identified at least 1 SCRA in samples from 49 patients, including an indole or indazole carboxylate SCRA in 17 (35%), specifically 5F-PB-22 (14%), FUB PB-22 (6%), BB-22 (2%), 5F NPB-22 (20%), FUB NPB-22 (2%), and 5F-SDB-005 (4%). In these 17 patients, there was analytical evidence of other substances in 16. Clinical features included agitation and aggression (82%), reduced consciousness (76%), acidosis (47%), hallucinations and paranoid features (41%), tachycardia (35%), hypertension (29%), raised creatine kinase (24%), and seizures (12%). CONCLUSIONS: This toxicovigilance system predicted the emergence of misuse of indole and indazole carboxylate SCRA, documented associated clinical harms, and notified relevant agencies. Toxicity appears consistent with other SCRA, including mental state disturbances and reduced consciousness.


Subject(s)
Cannabinoid Receptor Agonists/toxicity , Carboxylic Acids/chemistry , Indazoles/toxicity , Indoles/toxicity , Adverse Drug Reaction Reporting Systems , Cannabinoid Receptor Agonists/blood , Cannabinoid Receptor Agonists/urine , Chromatography, Liquid/methods , Humans , Indazoles/chemistry , Indoles/chemistry , Limit of Detection , Reproducibility of Results , Tandem Mass Spectrometry/methods , Toxicity Tests , United Kingdom
11.
ChemMedChem ; 12(12): 895-900, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28423228

ABSTRACT

The catalytic activity of DNA-dependent protein kinase (DNA-PK) is critical to its ability to repair lethal DNA double-strand breaks (DSBs). This includes repair of DSB lesions resulting from oxidative stress, oncogene-induced transcription, or following therapeutic treatment of cancer cells. Armed with this knowledge, many attempts have been made to identify small-molecule inhibitors of DNA-PK activity as an approach to induce tumour chemo- and radiosensitisation. This review examines the structures of known reversible and irreversible inhibitors, including those based on chromen-4-one, arylmorpholine, and benzaldehyde scaffolds. DNA-PK catalytic inhibitors, such as VX-984 (8-[(1S)-2-[[6-(4,6-dideuterio-2-methylpyrimidin-5-yl)pyrimidin-4-yl]amino]-1-methylethyl]quinoline-4-carboxamide) and M3814 ((S)-[2-chloro-4-fluoro-5-(7-morpholinoquinazolin-4-yl)phenyl]-(6-methoxypyridazin-3-yl)methanol), have now progressed into clinical development which should help to further advance our understanding of whether this approach is a promising therapeutic strategy for the treatment of cancer.


Subject(s)
Antineoplastic Agents/pharmacology , DNA-Activated Protein Kinase/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemistry , DNA-Activated Protein Kinase/metabolism , Humans , Models, Molecular , Molecular Structure , Neoplasms/pathology , Protein Kinase Inhibitors/chemistry
12.
J Med Chem ; 60(5): 1746-1767, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28005359

ABSTRACT

Purines and related heterocycles substituted at C-2 with 4'-sulfamoylanilino and at C-6 with a variety of groups have been synthesized with the aim of achieving selectivity of binding to CDK2 over CDK1. 6-Substituents that favor competitive inhibition at the ATP binding site of CDK2 were identified and typically exhibited 10-80-fold greater inhibition of CDK2 compared to CDK1. Most impressive was 4-((6-([1,1'-biphenyl]-3-yl)-9H-purin-2-yl)amino) benzenesulfonamide (73) that exhibited high potency toward CDK2 (IC50 0.044 µM) but was ∼2000-fold less active toward CDK1 (IC50 86 µM). This compound is therefore a useful tool for studies of cell cycle regulation. Crystal structures of inhibitor-kinase complexes showed that the inhibitor stabilizes a glycine-rich loop conformation that shapes the ATP ribose binding pocket and that is preferred in CDK2 but has not been observed in CDK1. This aspect of the active site may be exploited for the design of inhibitors that distinguish between CDK1 and CDK2.


Subject(s)
Cyclin-Dependent Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Crystallography, X-Ray , Protein Kinase Inhibitors/chemistry , Spectrum Analysis/methods , Structure-Activity Relationship
13.
PLoS One ; 8(12): e81763, 2013.
Article in English | MEDLINE | ID: mdl-24339963

ABSTRACT

Combined targeting of the MAPK and PI3K signalling pathways in cancer may be necessary for optimal therapeutic activity. To support clinical studies of combination therapy, 3'-deoxy-3'-[(18)F]-fluorothymidine ([(18)F]-FLT) uptake measured by Positron Emission Tomography (PET) was evaluated as a non-invasive surrogate response biomarker in pre-clinical models. The in vivo anti-tumour efficacy and PK-PD properties of the MEK inhibitor PD 0325901 and the PI3K inhibitor GDC-0941, alone and in combination, were evaluated in HCT116 and HT29 human colorectal cancer xenograft tumour-bearing mice, and [(18)F]-FLT PET investigated in mice bearing HCT116 xenografts. Dual targeting of PI3K and MEK induced marked tumour growth inhibition in vivo, and enhanced anti-tumour activity was predicted by [(18)F]-FLT PET scanning after 2 days of treatment. Pharmacodynamic analyses using the combination of the PI3K inhibitor GDC-0941 and the MEK inhibitor PD 0325901 revealed that increased efficacy is associated with an enhanced inhibition of the phosphorylation of ERK1/2, S6 and 4EBP1, compared to that observed with either single agent, and maintained inhibition of AKT phosphorylation. Pharmacokinetic studies indicated that there was no marked PK interaction between the two drugs. Together these results indicate that the combination of PI3K and MEK inhibitors can result in significant efficacy, and demonstrate for the first time that [(18)F]-FLT PET can be correlated to the improved efficacy of combined PI3K and MEK inhibitor treatment.


Subject(s)
Antiviral Agents/pharmacology , Benzamides/pharmacology , Colorectal Neoplasms , Dideoxynucleosides/pharmacology , Diphenylamine/analogs & derivatives , Indazoles/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Positron-Emission Tomography , Sulfonamides/pharmacology , Animals , Benzamides/agonists , Cell Line, Tumor , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/enzymology , Diphenylamine/agonists , Diphenylamine/pharmacology , Drug Synergism , Female , Heterografts , Humans , Indazoles/agonists , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Nude , Neoplasm Transplantation , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Radiography , Sulfonamides/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...