Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 931: 172960, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38710393

ABSTRACT

Aquatic plants (macrophytes) are important for ecosystem structure and function. Macrophyte mass developments are, however, often perceived as a nuisance and are commonly managed by mechanical removal. This is costly and often ineffective due to macrophyte regrowth. There is insufficient understanding about what causes macrophyte mass development, what people who use water bodies consider to be a nuisance, or the potential negative effects of macrophyte removal on the structure and function of ecosystems. To address these gaps, we performed a standardized set of in situ experiments and questionnaires at six sites (lakes, reservoirs, and rivers) on three continents where macrophyte mass developments occur. We then derived monetary values of ecosystem services for different scenarios of macrophyte management ("do nothing", "current practice", "maximum removal"), and developed a decision support system for the management of water courses experiencing macrophyte mass developments. We found that (a) macrophyte mass developments often occur in ecosystems which (unintentionally) became perfect habitats for aquatic plants, that (b) reduced ecosystem disturbance can cause macrophyte mass developments even if nutrient concentrations are low, that (c) macrophyte mass developments are indeed perceived negatively, but visitors tend to regard them as less of a nuisance than residents do, that (d) macrophyte removal lowers the water level of streams and adjacent groundwater, but this may have positive or negative overall societal effects, and that (e) the effects of macrophyte removal on water quality, greenhouse gas emissions, and biodiversity vary, and likely depend on ecosystem characteristics and macrophyte life form. Overall, we found that aquatic plant management often does not greatly affect the overall societal value of the ecosystem, and we suggest that the "do nothing" option should not be easily discarded in the management of perceived nuisance mass developments of aquatic plants.


Subject(s)
Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Plants , Rivers , Environmental Monitoring
2.
Environ Manage ; 71(5): 1024-1036, 2023 05.
Article in English | MEDLINE | ID: mdl-36627533

ABSTRACT

Mass developments of macrophytes occur frequently worldwide and are often considered a nuisance when interfering with human activities. It is crucial to understand the drivers of this perception if we are to develop effective management strategies for ecosystems with macrophyte mass developments. Using a comprehensive survey spanning five sites with different macrophyte species in four countries (Norway, France, Germany and South Africa), we quantified the perception of macrophyte growth as a nuisance among residents and visitors, and for different recreational activities (swimming, boating, angling, appreciation of biodiversity, appreciation of landscape and birdwatching). We then used a Bayesian network approach to integrate the perception of nuisance with the consequences of plant removal. From the 1234 responses collected from the five sites, a range of 73-93% of the respondents across the sites considered macrophyte growth a nuisance at each site. Residents perceived macrophytes up to 23% more problematic than visitors. Environmental mindedness of respondents did not influence the perception of nuisance. Perceived nuisance of macrophytes was relatively similar for different recreational activities that were possible in each case study site, although we found some site-specific variation. Finally, we illustrate how Bayesian networks can be used to choose the best management option by balancing people's perception of macrophyte growth with the potential consequences of macrophyte removal.


Subject(s)
Biodiversity , Ecosystem , Humans , Bayes Theorem , Germany , Plants
3.
J Environ Manage ; 325(Pt A): 116442, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36244282

ABSTRACT

Mass development of macrophytes is an increasing problem in many aquatic systems worldwide. Dense mats of macrophytes can negatively affect activities like boating, fishing or hydropower production and one of the management measures often applied is mechanical removal. In this study, we analyzed the effect of mechanical macrophyte removal on phytoplankton, zooplankton, and macroinvertebrate (pelagic and benthic samples) assemblages. Our study covered five sites in four countries in Europe and Africa with highly variable characteristics. In all sites, dense mats of different macrophyte species (Juncus bulbosus in a river in Norway; a mix of native macrophytes in a German river, Elodea nuttallii in a lake in Germany, Ludwigia spp. In a French lake and Pontederia crassipes in a South African lake) are problematic and mechanical removal was applied. In every country, we repeated the same BACI (Before-After-Control-Impact) design, including "before", "one week after", and "six weeks after" sampling in a control and an impact section. Repeating the same experimental design at all sites allowed us to disentangle common effects across all sites from site-specific effects. For each taxonomic group, we analyzed three structural and three functional parameters, which we combined in a scoring system. Overall, the removal of macrophytes negatively affected biodiversity, in particular of zooplankton and macroinvertebrate assemblages. In contrast, plant removal had positive effects on the phytoplankton assemblages. Effects were more pronounced one week after removal than six weeks after. Consequently, we suggest a stronger consideration of the effect of plant removal on biodiversity to arrive at more sustainable management practices in the future.


Subject(s)
Lakes , Rivers , Animals , Biodiversity , Ecosystem , Lakes/chemistry , Phytoplankton , Plants , Zooplankton
SELECTION OF CITATIONS
SEARCH DETAIL
...