Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 9(5): 695-698, 2023 05.
Article in English | MEDLINE | ID: mdl-37081291

ABSTRACT

Tyloses are swellings of parenchyma cells into adjacent water-conducting cells that develop in vascular plants as part of heartwood formation or specifically in response to embolism and pathogen infection. Here we document tyloses in Late Devonian (approximately 360 Myr ago) Callixylon wood. This discovery suggests that some of the earliest woody trees were already capable of protecting their vascular system by occluding individual conducting cells.


Subject(s)
Coleoptera , Keratoderma, Palmoplantar, Diffuse , Tracheophyta , Animals , Fossils , Wood , Trees , Biological Evolution
2.
Ann Bot ; 126(5): 915-928, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32577725

ABSTRACT

BACKGROUND AND AIMS: Structurally preserved arbuscular mycorrhizas from the Lower Devonian Rhynie chert represent core fossil evidence of the evolutionary history of mycorrhizal systems. Moreover, Rhynie chert fossils of glomeromycotan propagules suggest that this lineage of arbuscular fungi was morphologically diverse by the Early Devonian; however, only a small fraction of this diversity has been formally described and critically evaluated. METHODS: Thin sections, previously prepared by grinding wafers of chert from the Rhynie beds, were studied by transmitted light microscopy. Fossils corresponding to the description of Archaeospora spp. occurred in 29 slides, and were measured, photographed and compared with modern-day species in that genus. KEY RESULTS: Sessile propagules <85 µm in diameter, some still attached to a sporiferous saccule, were found in early land plant axes and the chert matrix; they developed, in a similar manner to extant Archaeospora, laterally or centrally within the saccule neck. Microscopic examination and comparison with extant fungi showed that, morphologically, the fossils share the characters used to circumscribe the genus Archaeospora (Glomeromycota; Archaeosporales; Archaeosporaceae). CONCLUSIONS: The fossils can be assigned with confidence to the extant family Archaeosporaceae, but because molecular analysis is necessary to place organisms in these taxa to present-day genera and species, they are placed in a newly proposed fossil taxon, Archaeosporites rhyniensis.


Subject(s)
Embryophyta , Glomeromycota , Mycorrhizae , Biological Evolution , Fossils
3.
PeerJ ; 8: e8660, 2020.
Article in English | MEDLINE | ID: mdl-32175190

ABSTRACT

Permineralized peat from the central Transantarctic Mountains of Antarctica has provided a wealth of information on plant and fungal diversity in Middle Triassic high-latitude forest paleoecosystems; however, there are no reports as yet of algae or cyanobacteria. The first record of a fossil filamentous cyanobacterium in this peat consists of wide, uniseriate trichomes composed of discoid cells up to 25 µm wide, and enveloped in a distinct sheath. Filament morphology, structurally preserved by permineralization and mineral replacement, corresponds to the fossil genus Palaeo-lyngbya, a predominantly Precambrian equivalent of the extant Lyngbya sensu lato (Oscillatoriaceae, Oscillatoriales). Specimens occur exclusively in masses of interwoven hyphae produced by the fungus Endochaetophora antarctica, suggesting that a special micro-environmental setting was required to preserve the filaments. Whether some form of symbiotic relationship existed between the fungus and cyanobacterium remains unknown.

4.
Philos Trans R Soc Lond B Biol Sci ; 373(1739)2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29254965

ABSTRACT

The Lower Devonian Rhynie chert is one of the most important rock deposits yielding comprehensive information on early continental plant, animal and microbial life. Fungi are especially abundant among the microbial remains, and include representatives of all major fungal lineages except Basidiomycota. This paper surveys the evidence assembled to date of fungal hyphae, mycelial cords and reproductive units (e.g. spores, sporangia, sporocarps), and presents examples of fungal associations and interactions with land plants, other fungi, algae, cyanobacteria and animals from the Rhynie chert. Moreover, a small, chytrid-like organism that occurs singly, in chain-like, linear arrangements, planar assemblages and three-dimensional aggregates of less than 10 to [Formula: see text] individuals in degrading land plant tissue in the Rhynie chert is formally described, and the name Perexiflasca tayloriana proposed for the organism. Perexiflasca tayloriana probably colonized senescent or atrophied plant parts and participated in the process of biological degradation. The fungal fossils described to date from the Rhynie chert constitute the largest body of structurally preserved evidence of fungi and fungal interactions from any rock deposit, and strongly suggest that fungi played important roles in the functioning of the Early Devonian Rhynie ecosystem.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.


Subject(s)
Embryophyta/microbiology , Fossils , Fungi/classification , Fungi/physiology , Chytridiomycota/classification , Chytridiomycota/cytology , Chytridiomycota/physiology , Ecosystem , Fossils/anatomy & histology , Fungi/cytology , Scotland
5.
J Phycol ; 53(3): 720-724, 2017 06.
Article in English | MEDLINE | ID: mdl-28295358

ABSTRACT

Unusual microfossils that occurred associated with fungal spores in the Lower Devonian (~410 mya) Windyfield chert from Scotland were composed of a narrow stipe (2.5-9 µm long) to which was attached an obovoid or elongate drop-shaped cell up to 14 µm long; a basal attachment pad was present in several specimens. The fossils were strikingly similar morphologically to certain present-day unicellular freshwater Tribophyceae and Chlorophyceae, but affinities to the fungal phylum Chytridiomycota also cannot be ruled out. This discovery adds to the inventory of distinctive microbial morphologies in the early non-marine paleoecosystems.


Subject(s)
Chlorophyta/classification , Chytridiomycota/classification , Fossils , Microalgae/classification , Stramenopiles/classification , Chlorophyta/cytology , Chytridiomycota/cytology , Microalgae/cytology , Scotland , Stramenopiles/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...