Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Biomed Opt ; 28(10): 102910, 2023 10.
Article in English | MEDLINE | ID: mdl-37799938

ABSTRACT

Significance: Optical coherence tomography (OCT) can be integrated into needle probes to provide real-time navigational guidance. However, unscanned implementations, which are the simplest to build, often struggle to discriminate the relevant tissues. Aim: We explore the use of polarization-sensitive (PS) methods as a means to enhance signal interpretability within unscanned coherence tomography probes. Approach: Broadband light from a laser centered at 1310 nm was sent through a fiber that was embedded into a needle. The polarization signal from OCT fringes was combined with Doppler-based tracking to create visualizations of the birefringence properties of the tissue. Experiments were performed in (i) well-understood structured tissues (salmon and shrimp) and (ii) ex vivo porcine spine. The porcine experiments were selected to illustrate an epidural guidance use case. Results: In the porcine spine, unscanned and Doppler-tracked PS OCT imaging data successfully identified the skin, subcutaneous tissue, ligament, and epidural spaces during needle insertion. Conclusions: PS imaging within a needle probe improves signal interpretability relative to structural OCT methods and may advance the clinical utility of unscanned OCT needle probes in a variety of applications.


Subject(s)
Skin , Tomography, Optical Coherence , Animals , Swine , Tomography, Optical Coherence/methods , Skin/diagnostic imaging , Light , Refraction, Ocular , Birefringence
2.
ArXiv ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37292463

ABSTRACT

We demonstrate that a simple, unscanned polarization-sensitive optical coherence tomography needle probe can be used to perform layer identification in biological tissues. Broadband light from a laser centered at 1310 nm was sent through a fiber that was embedded into a needle, and analysis of the polarization state of the returning light after interference coupled with Doppler-based tracking allowed the calculation of phase retardation and optic axis orientation at each needle location. Proof-of-concept phase retardation mapping was shown in Atlantic salmon tissue, while axis orientation mapping was demonstrated in white shrimp tissue. The needle probe was then tested on the ex vivo porcine spine, where mock epidural procedures were performed. Our imaging results demonstrate that unscanned, Doppler-tracked polarization-sensitive optical coherence tomography imaging successfully identified the skin, subcutaneous tissue, and ligament layers, before successfully reaching the target of the epidural space. The addition of polarization-sensitive imaging into the bore of a needle probe therefore allows layer identification at deeper locations in the tissue.

3.
Transl Vis Sci Technol ; 11(10): 28, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36259678

ABSTRACT

Purpose: Melanin plays an important function in maintaining eye health, however there are few metrics that can be used to study retinal melanin content in vivo. Methods: The slope of the spectral coefficient of variation (SSCoV) is a novel biomarker that measures chromophore concentration by analyzing the local divergence of spectral intensities using optical coherence tomography (OCT). This metric was validated in a phantom and applied in a longitudinal study of superoxide dismutase 1 knockout (SOD1-/-) mice, a model for wet and dry age-related macular degeneration. We also examined a new feature of interest in standard OCT image data, the ratio of maximum intensity in the retinal pigment epithelium to that of the choroid (RC ratio). These new biomarkers were supported by polarization-sensitive OCT and histological analysis. Results: SSCoV correlated well with depolarization metrics both in phantom and in vivo with both metrics decreasing more rapidly in SOD1-/- mice with age (P < 0.05). This finding is correlated with reduced melanin pigmentation in the choroid over time. The RC ratio clearly differentiated the SOD1-/- and control groups (P < 0.0005) irrespective of time and may indicate lower retinal pigment epithelium melanin in the SOD1-/- mice. Histological analysis showed decreased melanin content and potential differences in melanin granule shape in SOD1-/- mice. Conclusions: SSCoV and RC ratio biomarkers provided insights into the changes of retinal melanin in the SOD1-/- model longitudinally and noninvasively. Translational Relevance: These biomarkers were designed with the potential for rapid adoption by existing clinical OCT systems without requiring new hardware.


Subject(s)
Melanins , Tomography, Optical Coherence , Mice , Animals , Tomography, Optical Coherence/methods , Superoxide Dismutase-1 , Longitudinal Studies , Biomarkers
4.
Opt Lett ; 47(6): 1517-1520, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35290353

ABSTRACT

In optical coherence tomography (OCT), axial resolution and signal-to-noise ratio (SNR) are typically viewed as uncoupled parameters. We show that this is true only for mirror-like surfaces and that in diffuse scattering samples such as biological tissues there is an inherent coupling between axial resolution and measurement SNR. We explain the origin of this coupling and demonstrate that it can be used to achieve increased imaging penetration depth at the expense of resolution. Finally, we argue that this coupling should be considered during OCT system design processes that seek to balance the competing needs of resolution, sensitivity, and system/source complexity.


Subject(s)
Tomography, Optical Coherence , Signal-To-Noise Ratio , Tomography, Optical Coherence/methods
5.
Biomed Opt Express ; 12(4): 1774-1791, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33996197

ABSTRACT

Vascular leakage plays a key role in vision-threatening retinal diseases such as diabetic retinopathy and age-related macular degeneration. Fluorescence angiography is the current gold standard for identification of leaky vasculature in vivo, however it lacks depth resolution, providing only 2D images that complicate precise identification and localization of pathological vessels. Optical coherence tomography (OCT) has been widely adopted for clinical ophthalmology due to its high, micron-scale resolution and rapid volumetric scanning capabilities. Nevertheless, OCT cannot currently identify leaky blood vessels. To address this need, we have developed a new method called exogenous contrast-enhanced leakage OCT (ExCEL-OCT) which identifies the diffusion of tracer particles around leaky vasculature following injection of a contrast agent. We apply this method to a mouse model of retinal neovascularization and demonstrate high-resolution 3D vascular leakage measurements in vivo for the first time.

6.
Light Sci Appl ; 10(1): 6, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33402664

ABSTRACT

In this work, we present a significant step toward in vivo ophthalmic optical coherence tomography and angiography on a photonic integrated chip. The diffraction gratings used in spectral-domain optical coherence tomography can be replaced by photonic integrated circuits comprising an arrayed waveguide grating. Two arrayed waveguide grating designs with 256 channels were tested, which enabled the first chip-based optical coherence tomography and angiography in vivo three-dimensional human retinal measurements. Design 1 supports a bandwidth of 22 nm, with which a sensitivity of up to 91 dB (830 µW) and an axial resolution of 10.7 µm was measured. Design 2 supports a bandwidth of 48 nm, with which a sensitivity of 90 dB (480 µW) and an axial resolution of 6.5 µm was measured. The silicon nitride-based integrated optical waveguides were fabricated with a fully CMOS-compatible process, which allows their monolithic co-integration on top of an optoelectronic silicon chip. As a benchmark for chip-based optical coherence tomography, tomograms generated by a commercially available clinical spectral-domain optical coherence tomography system were compared to those acquired with on-chip gratings. The similarities in the tomograms demonstrate the significant clinical potential for further integration of optical coherence tomography on a chip system.

7.
J Biophotonics ; 14(4): e202000323, 2021 04.
Article in English | MEDLINE | ID: mdl-33332741

ABSTRACT

Polarization-sensitive optical coherence tomography (PS-OCT) enables three-dimensional imaging of biological tissues based on the inherent contrast provided by scattering and polarization properties. In fibrous tissue such as the white matter of the brain, PS-OCT allows quantitative mapping of tissue birefringence. For the popular PS-OCT layout using a single circular input state, birefringence measurements are based on a straight-forward evaluation of phase retardation data. However, the accuracy of these measurements strongly depends on the signal-to-noise ratio (SNR) and is prone to mapping artifacts when the SNR is low. Here we present a simple yet effective approach for improving the accuracy of PS-OCT phase retardation and birefringence measurements. By performing a noise bias correction of the detected OCT signal amplitudes, the impact of the noise floor on retardation measurements can be markedly reduced. We present simulation data to illustrate the influence of the noise bias correction on phase retardation measurements and support our analysis with real-world PS-OCT image data.


Subject(s)
Artifacts , Tomography, Optical Coherence , Birefringence , Neuroimaging , Signal-To-Noise Ratio
8.
Transl Vis Sci Technol ; 9(4): 15, 2020 03.
Article in English | MEDLINE | ID: mdl-32818102

ABSTRACT

Purpose: The retinal phenotype of popular mouse models mimicking ophthalmic diseases, such as the superoxide dismutase 1 (SOD1) knockout (KO) mouse model, has mainly been assessed by ex vivo histology and in vivo fundus photography. We used multifunctional optical coherence tomography (OCT) to characterize the retinas of SOD1 KO mice in vivo. Methods: The custom-made ophthalmoscope featured a combination of conventional OCT, polarization-sensitive OCT, and OCT angiography. Seven SOD1 KO mice and nine age-matched controls were imaged between 6 and 17 months of age. A postprocessing framework was used to analyze total and outer retinal thickness changes. Drusenlike lesions were segmented, and their sizes and the number of lesions were assessed quantitatively. Their appearance in the conventional reflectivity images, as well as in the corresponding polarization-sensitive images, was characterized qualitatively. Results: Drusenlike lesions increased in size and number with age for SOD1 KO mice. Exploiting the multiple contrast channels, the appearance of the lesions was found to resemble pseudodrusen observed in eyes of patients suffering from dry age-related macular degeneration. The total and outer retinal thicknesses were lower on average after 11 months and 7 months in SOD1 KO mice compared with age-matched controls. Neovascularizations were found in one out of seven KO animals. Conclusions: OCT imaging proved beneficial for a detailed in vivo characterization of the pathological changes in SOD1 KO mice. Translational Relevance: Phenotyping of animal models using modern imaging concepts can be conducted with more precision and might also ease the translation of conclusions between clinical and preclinical research.


Subject(s)
Superoxide Dismutase , Tomography, Optical Coherence , Animals , Humans , Mice , Mice, Knockout , Retina/diagnostic imaging , Superoxide Dismutase/genetics , Superoxide Dismutase-1/genetics
9.
Cancers (Basel) ; 12(7)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640583

ABSTRACT

Fluorescence-guided surgery is a state-of-the-art approach for intraoperative imaging during neurosurgical removal of tumor tissue. While the visualization of high-grade gliomas is reliable, lower grade glioma often lack visible fluorescence signals. Here, we present a hybrid prototype combining visible light optical coherence microscopy (OCM) and high-resolution fluorescence imaging for assessment of brain tumor samples acquired by 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery. OCM provides high-resolution information of the inherent tissue scattering and absorption properties of tissue. We here explore quantitative attenuation coefficients derived from volumetric OCM intensity data and quantitative high-resolution 5-ALA fluorescence as potential biomarkers for tissue malignancy including otherwise difficult-to-assess low-grade glioma. We validate our findings against the gold standard histology and use attenuation and fluorescence intensity measures to differentiate between tumor core, infiltrative zone and adjacent brain tissue. Using large field-of-view scans acquired by a near-infrared swept-source optical coherence tomography setup, we provide initial assessments of tumor heterogeneity. Finally, we use cross-sectional OCM images to train a convolutional neural network that discriminates tumor from non-tumor tissue with an accuracy of 97%. Collectively, the present hybrid approach offers potential to translate into an in vivo imaging setup for substantially improved intraoperative guidance of brain tumor surgeries.

10.
Opt Lett ; 45(8): 2359-2362, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32287239

ABSTRACT

In recent years, there has been growing interest in the application of exogenous contrast agents to supplement the traditional strengths of optical coherence tomography (OCT) and provide additional biological information. In this Letter, we present how indocyanine green, a common fluorescent contrast agent approved by the United States Food and Drug Administration, can provide absorption and spectral contrast for OCT imaging in the mouse eye in vivo. We further demonstrate high stability of spectral contrast measurements for the long-term monitoring of contrast agents in spite of fluctuations in intensity.


Subject(s)
Absorption, Physicochemical , Fluorescent Dyes/chemistry , Indocyanine Green/chemistry , Tomography, Optical Coherence/methods , Animals , Mice , Retina/diagnostic imaging , Signal-To-Noise Ratio
11.
Biomed Opt Express ; 11(4): 2085-2097, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32341868

ABSTRACT

Diagnostic classification techniques used to diagnose cataracts, the world's leading cause of blindness, are currently based on subjective methods. Here, we present optical coherence tomography as a noninvasive tool for volumetric visualization of lesions formed in the crystalline lens. A custom-made swept-source optical coherence tomography (SS-OCT) system was utilized to investigate the murine crystalline lens. In addition to imaging cataractous lesions in aged wildtype mice, we studied the structure and shape of cataracts in a mouse model of Alzheimer's disease. Hyperscattering opacifications in the crystalline lens were observed in both groups. Post mortem histological analysis were performed to correlate findings in the anterior and posterior part of the lens to 3D OCT in vivo imaging. Our results showcase the capability of OCT to rapidly visualize cataractous lesions in the murine lens and suggest that OCT might be a valuable tool that provides additional insight for preclinical studies of cataract formation.

12.
Neurophotonics ; 7(1): 015006, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32042855

ABSTRACT

Significance. Recent Alzheimer's disease (AD) patient studies have focused on retinal analysis, as the retina is the only part of the central nervous system that can be imaged noninvasively by optical methods. However, as this is a relatively new approach, the occurrence and role of retinal pathological features are still debated. Aim. The retina of an APP/PS1 mouse model was investigated using multicontrast optical coherence tomography (OCT) in order to provide a documentation of what was observed in both transgenic and wild-type mice. Approach. Both eyes of 24 APP/PS1 transgenic mice (age: 45 to 104 weeks) and 15 age-matched wild-type littermates were imaged by the custom-built OCT system. At the end of the experiment, retinas and brains were harvested from a subset of the mice (14 transgenic, 7 age-matched control) in order to compare the in vivo results to histological analysis and to quantify the cortical amyloid beta plaque load. Results. The system provided a combination of standard reflectivity data, polarization-sensitive data, and OCT angiograms. Qualitative and quantitative information from the resultant OCT images was extracted on retinal layer thickness and structure, presence of hyper-reflective foci, phase retardation abnormalities, and retinal vasculature. Conclusions. Although multicontrast OCT revealed abnormal structural properties and phase retardation signals in the retina of this APP/PS1 mouse model, the observations were very similar in transgenic and control mice.

13.
Opt Lett ; 44(16): 4040-4043, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31415542

ABSTRACT

We present a polarization-sensitive (PS) extension for bright- and dark-field (BRAD) optical coherence tomography imaging. Using a few-mode fiber detection scheme, the light backscattered at different angles is separated, and the BRAD images of tissue scattering are generated. A calibration method to correct for the fiber birefringence is proposed. Since particle scattering profiles are polarization dependent, a PS detection extends the capabilities for investigating the scattering properties of biological tissues. Both phantoms consisting of different-sized microparticles and a brain tissue specimen were imaged to validate the system performance and demonstrate the complementary image contrast.

14.
J Biophotonics ; 12(12): e201900153, 2019 12.
Article in English | MEDLINE | ID: mdl-31334610

ABSTRACT

Previous studies for melanin visualization in the retinal pigment epithelium (RPE) have exploited either its absorption properties (using photoacoustic tomography or photothermal optical coherence tomography [OCT]) or its depolarization properties (using polarization sensitive OCT). However, these methods are only suitable when the melanin concentration is sufficiently high. In this work, we present the concept of hyperspectral OCT for melanin visualization in the RPE when the concentration is low. Based on white light OCT, a hyperspectral stack of 27 wavelengths (440-700 nm) was created in post-processing for each depth-resolved image. Owing to the size and shape of the melanin granules in the RPE, the variations in backscattering coefficient as a function of wavelength could be identified-a result which is to be expected from Mie theory. This effect was successfully identified both in eumelanin-containing phantoms and in vivo in the low-concentration Brown Norway rat RPE.


Subject(s)
Melanins/metabolism , Retinal Detachment/metabolism , Tomography, Optical Coherence , Animals , Feasibility Studies , Image Processing, Computer-Assisted , Mice , Phantoms, Imaging , Rats
15.
J Biomed Opt ; 24(6): 1-11, 2019 06.
Article in English | MEDLINE | ID: mdl-31240898

ABSTRACT

We present a multimodal visible light optical coherence microscopy (OCM) and fluorescence imaging (FI) setup. Specification and phantom measurements were performed to characterize the system. Two applications in neuroimaging were investigated. First, curcumin-stained brain slices of a mouse model of Alzheimer's disease were examined. Amyloid-beta plaques were identified based on the fluorescence of curcumin, and coregistered morphological images of the brain tissue were provided by the OCM channel. Second, human brain tumor biopsies retrieved intraoperatively were imaged prior to conventional neuropathologic work-up. OCM revealed the three-dimensional structure of the brain parenchyma, and FI added the tumor tissue-specific contrast. Attenuation coefficients computed from the OCM data and the florescence intensity values were analyzed and showed a statistically significant difference for 5-aminolevulinic acid (5-ALA)-positive and -negative brain tissues. OCM findings correlated well with malignant hot spots within brain tumor biopsies upon histopathology. The combination of OCM and FI seems to be a promising optical imaging modality providing complementary contrast for applications in the field of neuroimaging.


Subject(s)
Alzheimer Disease/diagnosis , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Microscopy/methods , Neuroimaging/methods , Optical Imaging/methods , Tomography, Optical Coherence/methods , Alzheimer Disease/pathology , Animals , Brain/pathology , Brain Neoplasms/pathology , Humans , Image Processing, Computer-Assisted/methods , Mice , Plaque, Amyloid/diagnostic imaging
16.
Biomed Opt Express ; 9(6): 2476-2494, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-30258667

ABSTRACT

Optical coherence tomography (OCT) is a powerful technology for rapid volumetric imaging in biomedicine. The bright field imaging approach of conventional OCT systems is based on the detection of directly backscattered light, thereby waiving the wealth of information contained in the angular scattering distribution. Here we demonstrate that the unique features of few-mode fibers (FMF) enable simultaneous bright and dark field (BRAD) imaging for OCT. As backscattered light is picked up by the different modes of a FMF depending upon the angular scattering pattern, we obtain access to the directional scattering signatures of different tissues by decoupling illumination and detection paths. We exploit the distinct modal propagation properties of the FMF in concert with the long coherence lengths provided by modern wavelength-swept lasers to achieve multiplexing of the different modal responses into a combined OCT tomogram. We demonstrate BRAD sensing for distinguishing differently sized microparticles and showcase the performance of BRAD-OCT imaging with enhanced contrast for ex vivo tumorous tissue in glioblastoma and neuritic plaques in Alzheimer's disease.

17.
Neurophotonics ; 5(3): 035002, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30137880

ABSTRACT

We implemented a wide field-of-view visible-light optical coherence microscope (OCM) for investigating ex-vivo brain tissue of patients diagnosed with Alzheimer's disease (AD) and of a mouse model of AD. A submicrometer axial resolution in tissue was achieved using a broad visible light spectrum. The use of various objective lenses enabled reaching micrometer transversal resolution and the acquisition of images of microscopic brain features, such as cell structures, vessels, and white matter tracts. Amyloid-beta plaques in the range of 10 to 70 µm were visualized. Large field-of-view images of young and old mouse brain sections were imaged using an automated x-y-z stage. The plaque load was characterized, revealing an age-related increase. Human brain tissue affected by cerebral amyloid angiopathy was investigated and hyperscattering structures resembling amyloid beta accumulations in the vessel walls were identified. All results were in good agreement with histology. A comparison of plaque features in both human and mouse brain tissue was performed, revealing an increase in plaque load and a decrease in reflectivity for mouse as compared with human brain tissue. Based on the promising outcome of our experiments, visible light OCM might be a powerful tool for investigating microscopic features in ex-vivo brain tissue.

18.
Biomed Opt Express ; 9(5): 2115-2129, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29760974

ABSTRACT

A white light polarization sensitive optical coherence tomography system has been developed, using a supercontinuum laser as the light source. By detecting backscattered light from 400 - 700 nm, an axial resolution of 1.0 µm in air was achieved. The system consists of a free-space interferometer and two homemade spectrometers that detect orthogonal polarization states. Following system specifications, images of a healthy murine retina as acquired by this non-contact system are presented, showing high resolution reflectivity images as well as spectroscopic and polarization sensitive contrast. Additional images of the very-low-density-lipoprotein-receptor (VLDLR) knockout mouse model were acquired. The high resolution allows the detection of small lesions in the retina.

19.
Biomed Opt Express ; 8(9): 4007-4025, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28966843

ABSTRACT

A visible light spectral domain optical coherence microscopy system was developed. A high axial resolution of 0.88 µm in tissue was achieved using a broad visible light spectrum (425 - 685 nm). Healthy human brain tissue was imaged to quantify the difference between white (WM) and grey matter (GM) in intensity and attenuation. The high axial resolution enables the investigation of amyloid-beta plaques of various sizes in human brain tissue and animal models of Alzheimer's disease (AD). By performing a spectroscopic analysis of the OCM data, differences in the characteristics for WM, GM, and neuritic amyloid-beta plaques were found. To gain additional contrast, Congo red stained AD brain tissue was investigated. A first effort was made to investigate optically cleared mouse brain tissue to increase the penetration depth and visualize hyperscattering structures in deeper cortical regions.

20.
PLoS One ; 11(10): e0164419, 2016.
Article in English | MEDLINE | ID: mdl-27711217

ABSTRACT

We present a multi-functional optical coherence tomography (OCT) imaging approach to study retinal changes in the very-low-density-lipoprotein-receptor (VLDLR) knockout mouse model with a threefold contrast. In the retinas of VLDLR knockout mice spontaneous retinal-chorodoidal neovascularizations form, having an appearance similar to choroidal and retinal neovascularizations (CNV and RNV) in neovascular age-related macular degeneration (AMD) or retinal angiomatous proliferation (RAP). For this longitudinal study, the mice were imaged every 4 to 6 weeks starting with an age of 4 weeks and following up to the age of 11 months. Significant retinal changes were identified by the multi-functional imaging approach offering a threefold contrast: reflectivity, polarization sensitivity (PS) and motion contrast based OCT angiography (OCTA). By use of this intrinsic contrast, the long-term development of neovascularizations was studied and associated processes, such as the migration of melanin pigments or retinal-choroidal anastomosis, were assessed in vivo. Furthermore, the in vivo imaging results were validated with histological sections at the endpoint of the experiment. Multi-functional OCT proves as a powerful tool for longitudinal retinal studies in preclinical research of ophthalmic diseases. Intrinsic contrast offered by the functional extensions of OCT might help to describe regulative processes in genetic animal models and potentially deepen the understanding of the pathogenesis of retinal diseases such as wet AMD.


Subject(s)
Receptors, LDL/genetics , Retina/diagnostic imaging , Animals , Choroidal Neovascularization/diagnostic imaging , Choroidal Neovascularization/pathology , Image Processing, Computer-Assisted , Longitudinal Studies , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/deficiency , Retina/pathology , Retina/physiology , Retinal Neovascularization/diagnostic imaging , Retinal Neovascularization/pathology , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL
...