Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 25(3): 444-50, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25577040

ABSTRACT

Highly selective orexin receptor antagonists (SORAs) of the orexin 2 receptor (OX2R) have become attractive targets both as potential therapeutics for insomnia as well as biological tools to help further elucidate the underlying pharmacology of the orexin signaling pathway. Herein, we describe the discovery of a novel piperidine ether 2-SORA class identified by systematic lead optimization beginning with filorexant, a dual orexin receptor antagonist (DORA) that recently completed Phase 2 clinical trials. Changes to the ether linkage and pendant heterocycle of filorexant were found to impart significant selectivity for OX2R, culminating in lead compound PE-6. PE-6 displays sub-nanomolar binding affinity and functional potency on OX2R while maintaining >1600-fold binding selectivity and >200-fold functional selectivity versus the orexin 1 receptor (OX1R). PE-6 bears a clean off-target profile, a good overall preclinical pharmacokinetic (PK) profile, and reduces wakefulness with increased NREM and REM sleep when evaluated in vivo in a rat sleep study. Importantly, subtle structural changes to the piperidine ether class impart dramatic changes in receptor selectivity. To this end, our laboratories have identified multiple piperidine ether 2-SORAs, 1-SORAs, and DORAs, providing access to a number of important biological tool compounds from a single structural class.


Subject(s)
Ethers/chemistry , Orexin Receptor Antagonists , Piperidines/chemistry , Pyrimidines/chemistry , Animals , Dogs , Drug Evaluation, Preclinical , Ethers/chemical synthesis , Ethers/pharmacokinetics , Half-Life , Humans , Orexin Receptors/metabolism , Piperidines/metabolism , Protein Binding , Pyrimidines/metabolism , Rats , Sleep/drug effects , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 25(21): 4992-4999, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25613676

ABSTRACT

Dual orexin receptor antagonists (DORAs), or orexin 1 (OX1) and orexin 2 (OX2) receptor antagonists, have demonstrated clinical utility for the treatment of insomnia. Medicinal chemistry efforts focused on the reduction of bioactivation potential of diazepane amide 1 through the modification of the Western heterocycle resulted in the discovery of suvorexant, a DORA recently approved by the FDA for the treatment of insomnia. A second strategy towards reducing bioactivation risk is presented herein through the exploration of monocyclic quinazoline isosteres, namely substituted pyrimidines. These studies afforded potent DORAs with significantly reduced bioactivation risk and efficacy in rodent sleep models. Surprisingly, side products from the chemistry used to produce these DORAs yielded isomeric pyrimidine-containing diazepane amides possessing selective OX2R antagonist (2-SORA) profiles. Additional exploration of these isomeric pyrimidines uncovered potent 2-SORA diazepane amides with sleep efficacy in mouse EEG studies.


Subject(s)
Drug Discovery , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/metabolism , Pyrimidines/pharmacology , Quinazolines/pharmacology , Sleep Initiation and Maintenance Disorders/drug therapy , Animals , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Humans , Mice , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Orexin Receptor Antagonists/chemical synthesis , Orexin Receptor Antagonists/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Rats , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 24(20): 4884-90, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25248679

ABSTRACT

Orexin receptor antagonists have demonstrated clinical utility for the treatment of insomnia. The majority of clinical efforts to date have focused on the development of dual orexin receptor antagonists (DORAs), small molecules that antagonize both the orexin 1 and orexin 2 receptors. Our group has recently disclosed medicinal chemistry efforts to identify highly potent, orally bioavailable selective orexin 2 receptor antagonists (2-SORAs) that possess acceptable profiles for clinical development. Herein we report additional SAR studies within the 'triaryl' amide 2-SORA series focused on improvements in compound stability in acidic media and time-dependent inhibition of CYP3A4. These studies resulted in the discovery of 2,5-disubstituted isonicotinamide 2-SORAs such as compound 24 that demonstrated improved stability and TDI profiles as well as excellent sleep efficacy across species.


Subject(s)
Drug Discovery , Orexin Receptor Antagonists , Pyridines/pharmacology , Sleep Initiation and Maintenance Disorders/drug therapy , Thiazoles/pharmacology , Animals , Dogs , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Rats , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
4.
Bioorg Med Chem Lett ; 24(9): 2079-85, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24704030

ABSTRACT

Recent clinical studies have demonstrated that dual orexin receptor antagonists (OX1R and OX2R antagonists or DORAs) represent a novel treatment option for insomnia patients. Previously we have disclosed several compounds in the diazepane amide DORA series with excellent potency and both preclinical and clinical sleep efficacy. Additional SAR studies in this series were enabled by the expansion of the acetonitrile-assisted, diphosgene-mediated 2,4-dichloropyrimidine synthesis to novel substrates providing an array of Western heterocycles. These heterocycles were utilized to synthesize analogs in short order with high levels of potency on orexin 1 and orexin 2 receptors as well as in vivo sleep efficacy in the rat.


Subject(s)
Orexin Receptor Antagonists , Pyrimidines/chemistry , Pyrimidines/pharmacology , Sleep/drug effects , Animals , Drug Discovery , Humans , Pyrimidines/chemical synthesis , Rats , Sleep Initiation and Maintenance Disorders/drug therapy
5.
ChemMedChem ; 9(2): 311-22, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24376006

ABSTRACT

The field of small-molecule orexin antagonist research has evolved rapidly in the last 15 years from the discovery of the orexin peptides to clinical proof-of-concept for the treatment of insomnia. Clinical programs have focused on the development of antagonists that reversibly block the action of endogenous peptides at both the orexin 1 and orexin 2 receptors (OX1 R and OX2 R), termed dual orexin receptor antagonists (DORAs), affording late-stage development candidates including Merck's suvorexant (new drug application filed 2012). Full characterization of the pharmacology associated with antagonism of either OX1 R or OX2 R alone has been hampered by the dearth of suitable subtype-selective, orally bioavailable ligands. Herein, we report the development of a selective orexin 2 antagonist (2-SORA) series to afford a potent, orally bioavailable 2-SORA ligand. Several challenging medicinal chemistry issues were identified and overcome during the development of these 2,5-disubstituted nicotinamides, including reversible CYP inhibition, physiochemical properties, P-glycoprotein efflux and bioactivation. This article highlights structural modifications the team utilized to drive compound design, as well as in vivo characterization of our 2-SORA clinical candidate, 5''-chloro-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2':5',3''-terpyridine-3'-carboxamide (MK-1064), in mouse, rat, dog, and rhesus sleep models.


Subject(s)
Drug Design , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Neuropeptides/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Sleep Initiation and Maintenance Disorders/drug therapy , Animals , Dogs , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Neuropeptides/metabolism , Orexins , Rats , Rats, Sprague-Dawley , Sleep Initiation and Maintenance Disorders/metabolism
6.
ChemMedChem ; 7(3): 415-24, 337, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22307992

ABSTRACT

Insomnia is a common disorder that can be comorbid with other physical and psychological illnesses. Traditional management of insomnia relies on general central nervous system (CNS) suppression using GABA modulators. Many of these agents fail to meet patient needs with respect to sleep onset, maintenance, and next-day residual effects and have issues related to tolerance, memory disturbances, and balance. Orexin neuropeptides are central regulators of wakefulness, and orexin antagonism has been identified as a novel mechanism for treating insomnia with clinical proof of concept. Herein we describe the discovery of a series of α-methylpiperidine carboxamide dual orexin 1 and orexin 2 receptor (OX(1) R/OX(2) R) antagonists (DORAs). The design of these molecules was inspired by earlier work from this laboratory in understanding preferred conformational properties for potent orexin receptor binding. Minimization of 1,3-allylic strain interactions was used as a design principle to synthesize 2,5-disubstituted piperidine carboxamides with axially oriented substituents including DORA 28. DORA 28 (MK-6096) has exceptional in vivo activity in preclinical sleep models, and has advanced into phase II clinical trials for the treatment of insomnia.


Subject(s)
Hypnotics and Sedatives/chemical synthesis , Piperidines/chemical synthesis , Pyridines/chemical synthesis , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors , Sleep Initiation and Maintenance Disorders/drug therapy , Triazoles/chemical synthesis , Animals , Brain/drug effects , Brain/metabolism , Dogs , Drug Discovery , Humans , Hypnotics and Sedatives/pharmacokinetics , Hypnotics and Sedatives/pharmacology , Magnetic Resonance Spectroscopy , Models, Molecular , Orexin Receptors , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protein Binding , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Sleep , Sleep Initiation and Maintenance Disorders/metabolism , Stereoisomerism , Structure-Activity Relationship , Triazoles/pharmacokinetics , Triazoles/pharmacology , Wakefulness/drug effects
7.
Bioorg Med Chem Lett ; 20(14): 4201-5, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20610153

ABSTRACT

Orexins are excitatory neuropeptides that regulate arousal and sleep. Orexin receptor antagonists promote sleep and offer potential as a new therapy for the treatment of insomnia. In this Letter, we describe the synthesis of constrained diazepanes having a 3,9 diazabicyclo[4.2.1]nonane bicyclic core with good oral bioavailability and sleep-promoting activity in a rat EEG model.


Subject(s)
Alkanes/pharmacology , Drug Discovery , Hypnotics and Sedatives/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors , Alkanes/chemistry , Alkanes/pharmacokinetics , Animals , Aza Compounds/chemistry , Aza Compounds/pharmacokinetics , Aza Compounds/pharmacology , Biological Availability , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/pharmacology , Electroencephalography , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacokinetics , Orexin Receptors , Rats , Rats, Sprague-Dawley
8.
J Med Chem ; 53(14): 5320-32, 2010 Jul 22.
Article in English | MEDLINE | ID: mdl-20565075

ABSTRACT

Despite increased understanding of the biological basis for sleep control in the brain, few novel mechanisms for the treatment of insomnia have been identified in recent years. One notable exception is inhibition of the excitatory neuropeptides orexins A and B by design of orexin receptor antagonists. Herein, we describe how efforts to understand the origin of poor oral pharmacokinetics in a leading HTS-derived diazepane orexin receptor antagonist led to the identification of compound 10 with a 7-methyl substitution on the diazepane core. Though 10 displayed good potency, improved pharmacokinetics, and excellent in vivo efficacy, it formed reactive metabolites in microsomal incubations. A mechanistic hypothesis coupled with an in vitro assay to assess bioactivation led to replacement of the fluoroquinazoline ring of 10 with a chlorobenzoxazole to provide 3 (MK-4305), a potent dual orexin receptor antagonist that is currently being tested in phase III clinical trials for the treatment of primary insomnia.


Subject(s)
Azepines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors , Triazoles/pharmacology , Animals , Azepines/chemical synthesis , Azepines/pharmacokinetics , Biological Availability , CHO Cells , Cricetinae , Cricetulus , Dogs , Humans , In Vitro Techniques , Male , Microsomes, Liver/metabolism , Orexin Receptors , Radioligand Assay , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/genetics , Sleep/drug effects , Sleep Initiation and Maintenance Disorders/drug therapy , Stereoisomerism , Structure-Activity Relationship , Telemetry , Triazoles/chemical synthesis , Triazoles/pharmacokinetics , Wakefulness/drug effects
9.
Bioorg Med Chem Lett ; 20(7): 2311-5, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20207138

ABSTRACT

Orexins are neuropeptides that regulate wakefulness and arousal. Small molecule antagonists of orexin receptors may provide a novel therapy for the treatment of insomnia and other sleep disorders. In this Letter we describe the design and synthesis of conformationally constrained N,N-disubstituted 1,4-diazepanes as orexin receptor antagonists. The design of these constrained analogs was guided by an understanding of the preferred solution and solid state conformation of the diazepane central ring.


Subject(s)
Azepines/chemistry , Azepines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Neuropeptide/metabolism , Animals , Azepines/chemical synthesis , Azepines/pharmacokinetics , Crystallography, X-Ray , Dogs , Humans , Models, Molecular , Orexin Receptors , Rats , Rats, Sprague-Dawley , Sleep Wake Disorders/drug therapy
10.
ChemMedChem ; 4(7): 1069-74, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19418500

ABSTRACT

Silent Night: Antagonism of the orexin (or hypocretin) system has recently been identified as a novel mechanism for the treatment of insomnia. Herein, we describe discovery of a dual (OX(1)R/OX(2)R) orexin receptor antagonist featuring a 1,4-diazepane central constraint that blocks orexin signaling in vivo. In telemetry-implanted rats, oral administration of this antagonist produced a decrease in wakefulness, while increasing REM and non-REM sleep.


Subject(s)
Azepines/chemistry , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors , Sleep Wake Disorders/drug therapy , Animals , Azepines/pharmacokinetics , Azepines/therapeutic use , Central Nervous System/drug effects , Orexin Receptors , Rats , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Structure-Activity Relationship
11.
J Med Chem ; 51(13): 3946-52, 2008 Jul 10.
Article in English | MEDLINE | ID: mdl-18553956

ABSTRACT

Selective bradykinin (BK) B 1 receptor antagonists could be novel therapeutic agents for the treatment of pain and inflammation. Elucidation of the structure activity relationships of the structurally novel HTS lead compound 1 provided potent hBK B 1 receptor antagonists with excellent receptor occupancy in the CNS of hBK B 1 transgenic rats.


Subject(s)
Amines/chemistry , Benzophenones/chemistry , Benzophenones/pharmacology , Bradykinin B1 Receptor Antagonists , Animals , Benzophenones/chemical synthesis , Cell Line , Dogs , Humans , Molecular Structure , Rats , Receptor, Bradykinin B1/metabolism , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 17(11): 3006-9, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17428657

ABSTRACT

Selective bradykinin (BK) B(1) receptor antagonists have been shown to be antinociceptive in animal models and could be novel therapeutic agents for the treatment of pain and inflammation. Elucidation of the structure-activity relationships of the biphenyl moiety of the lead compound 1 provided a potent new structural class of BK B(1) receptor antagonists.


Subject(s)
Analgesics/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Bradykinin B1 Receptor Antagonists , Cyclohexanes/chemistry , Hydrocarbons, Fluorinated/chemistry , Pyridines/chemistry , Analgesics/chemical synthesis , Analgesics/pharmacology , Animals , Animals, Genetically Modified , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclohexanes/chemical synthesis , Cyclohexanes/pharmacology , Humans , Hydrocarbons, Fluorinated/chemical synthesis , Hydrocarbons, Fluorinated/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Rats , Receptor, Bradykinin B1/genetics , Structure-Activity Relationship
13.
J Med Chem ; 50(2): 272-82, 2007 Jan 25.
Article in English | MEDLINE | ID: mdl-17228869

ABSTRACT

A series of biphenylaminocyclopropane carboxamide based bradykinin B1 receptor antagonists has been developed that possesses good pharmacokinetic properties and is CNS penetrant. Discovery that the replacement of the trifluoropropionamide in the lead structure with polyhaloacetamides, particularly a trifluoroacetamide, significantly reduced P-glycoprotein mediated efflux for the series proved essential. One of these novel bradykinin B1 antagonists (13b) also exhibited suitable pharmacokinetic properties and efficient ex vivo receptor occupancy for further development as a novel approach for the treatment of pain and inflammation.


Subject(s)
Acetamides/chemical synthesis , Amides/chemical synthesis , Aminobiphenyl Compounds/chemical synthesis , Benzoates/chemical synthesis , Bradykinin B1 Receptor Antagonists , Brain/metabolism , Cyclopropanes/chemical synthesis , Spinal Cord/metabolism , Acetamides/pharmacokinetics , Acetamides/pharmacology , Administration, Oral , Amides/pharmacokinetics , Amides/pharmacology , Aminobiphenyl Compounds/pharmacokinetics , Aminobiphenyl Compounds/pharmacology , Analgesics/chemical synthesis , Analgesics/chemistry , Analgesics/pharmacology , Animals , Animals, Genetically Modified , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzoates/pharmacokinetics , Benzoates/pharmacology , Biological Availability , Blood-Brain Barrier/metabolism , CHO Cells , Chlorocebus aethiops , Cricetinae , Cricetulus , Cyclopropanes/pharmacokinetics , Cyclopropanes/pharmacology , Female , Humans , Macaca mulatta , Male , Mice , Rabbits , Radioligand Assay , Rats , Species Specificity , Structure-Activity Relationship
14.
Biochem Biophys Res Commun ; 331(1): 159-66, 2005 May 27.
Article in English | MEDLINE | ID: mdl-15845373

ABSTRACT

We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.


Subject(s)
Models, Molecular , Quinoxalines/chemistry , Receptor, Bradykinin B1/chemistry , Amino Acid Sequence , Binding Sites , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Secondary , Receptor, Bradykinin B1/genetics , Receptor, Bradykinin B1/metabolism , Rhodopsin/chemistry , Sequence Alignment , Structural Homology, Protein
16.
J Am Chem Soc ; 125(25): 7516-7, 2003 Jun 25.
Article in English | MEDLINE | ID: mdl-12812482

ABSTRACT

Bradykinin (BK) plays an important role in the pathophysiological processes accompanying pain and inflammation. Selective bradykinin B1 receptor antagonists have been shown to be anti-nociceptive in animal models and could be novel therapeutic agents for the treatment of pain and inflammation. We have explored chemical modifications in a series of dihydroquinoxalinone sulfonamides to evaluate the effects of various structural changes on biological activity. The optimization of a screening lead compound, facilitated by a homology model of the BK B1 receptor, culminated in the discovery of a potent human BK B1 receptor antagonist. Results from site-directed mutagenesis studies and experiments in an animal pain model are presented.


Subject(s)
Bradykinin Receptor Antagonists , Quinoxalines/chemistry , Quinoxalines/pharmacology , Analgesics/chemistry , Analgesics/pharmacology , Animals , Binding Sites , Dogs , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Pain Measurement/drug effects , Rabbits , Rats , Receptor, Bradykinin B1 , Receptors, Bradykinin/chemistry , Receptors, Bradykinin/genetics , Receptors, Bradykinin/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...