Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 12: 1248905, 2024.
Article in English | MEDLINE | ID: mdl-38450137

ABSTRACT

Purpose: The British Columbia COVID-19 Cohort (BCC19C) was developed from an innovative, dynamic surveillance platform and is accessed/analyzed through a cloud-based environment. The platform integrates recently developed provincial COVID-19 datasets (refreshed daily) with existing administrative holdings and provincial registries (refreshed weekly/monthly). The platform/cohort were established to inform the COVID-19 response in near "real-time" and to answer more in-depth epidemiologic questions. Participants: The surveillance platform facilitates the creation of large, up-to-date analytic cohorts of people accessing COVID-19 related services and their linked medical histories. The program of work focused on creating/analyzing these cohorts is referred to as the BCC19C. The administrative/registry datasets integrated within the platform are not specific to COVID-19 and allow for selection of "control" individuals who have not accessed COVID-19 services. Findings to date: The platform has vastly broadened the range of COVID-19 analyses possible, and outputs from BCC19C analyses have been used to create dashboards, support routine reporting and contribute to the peer-reviewed literature. Published manuscripts (total of 15 as of July, 2023) have appeared in high-profile publications, generated significant media attention and informed policy and programming. In this paper, we conducted an analysis to identify sociodemographic and health characteristics associated with receiving SARS-CoV-2 laboratory testing, testing positive, and being fully vaccinated. Other published analyses have compared the relative clinical severity of different variants of concern; quantified the high "real-world" effectiveness of vaccines in addition to the higher risk of myocarditis among younger males following a 2nd dose of an mRNA vaccine; developed and validated an algorithm for identifying long-COVID patients in administrative data; identified a higher rate of diabetes and healthcare utilization among people with long-COVID; and measured the impact of the pandemic on mental health, among other analyses. Future plans: While the global COVID-19 health emergency has ended, our program of work remains robust. We plan to integrate additional datasets into the surveillance platform to further improve and expand covariate measurement and scope of analyses. Our analyses continue to focus on retrospective studies of various aspects of the COVID-19 pandemic, as well as prospective assessment of post-acute COVID-19 conditions and other impacts of the pandemic.


Subject(s)
COVID-19 , Male , Humans , COVID-19/epidemiology , Post-Acute COVID-19 Syndrome , British Columbia/epidemiology , Pandemics , Prospective Studies , Retrospective Studies , SARS-CoV-2
2.
J Med Virol ; 95(1): e28423, 2023 01.
Article in English | MEDLINE | ID: mdl-36546412

ABSTRACT

The SARS-CoV-2 variant Omicron emerged in late 2021. In British Columbia (BC), Canada, and globally, three genetically distinct subvariants of Omicron, BA.1, BA.2, and BA.5, emerged and became dominant successively within an 8-month period. SARS-CoV-2 subvariants continue to circulate in the population, acquiring new mutations that have the potential to alter infectivity, immunity, and disease severity. Here, we report a propensity-matched severity analysis from residents of BC over the course of the Omicron wave, including 39,237 individuals infected with BA.1, BA.2, or BA.5 based on paired high-quality sequence data and linked to comprehensive clinical outcomes data between December 23, 2021 and August 31, 2022. Relative to BA.1, BA.2 cases were associated with a 15% and 28% lower risk of hospitalization and intensive care unit (ICU) admission (aHRhospital = 1.17; 95% confidence interval [CI] = 1.096-1.252; aHRICU = 1.368; 95% CI = 1.152-1.624), whereas BA.5 infections were associated with an 18% higher risk of hospitalization (aHRhospital = 1.18; 95% CI = 1.133-1.224) after accounting for age, sex, comorbidities, vaccination status, geography, and social determinants of health. Phylogenetic analysis revealed no specific subclades associated with more severe clinical outcomes for any Omicron subvariant. In summary, BA.1, BA.2, and BA.5 subvariants were associated with differences in clinical severity, emphasizing how variant-specific monitoring programs remain critical components of patient and population-level public health responses as the pandemic continues.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , British Columbia/epidemiology , SARS-CoV-2/genetics , Cohort Studies , Phylogeny , COVID-19/epidemiology
3.
Clin Infect Dis ; 76(3): e18-e25, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36041009

ABSTRACT

BACKGROUND: In late 2021, the Omicron severe acute respiratory syndrome coronavirus 2 variant emerged and rapidly replaced Delta as the dominant variant. The increased transmissibility of Omicron led to surges in case rates and hospitalizations; however, the true severity of the variant remained unclear. We aimed to provide robust estimates of Omicron severity relative to Delta. METHODS: This retrospective cohort study was conducted with data from the British Columbia COVID-19 Cohort, a large provincial surveillance platform with linkage to administrative datasets. To capture the time of cocirculation with Omicron and Delta, December 2021 was chosen as the study period. Whole-genome sequencing was used to determine Omicron and Delta variants. To assess the severity (hospitalization, intensive care unit [ICU] admission, length of stay), we conducted adjusted Cox proportional hazard models, weighted by inverse probability of treatment weights (IPTW). RESULTS: The cohort was composed of 13 128 individuals (7729 Omicron and 5399 Delta). There were 419 coronavirus disease 2019 hospitalizations, with 118 (22%) among people diagnosed with Omicron (crude rate = 1.5% Omicron, 5.6% Delta). In multivariable IPTW analysis, Omicron was associated with a 50% lower risk of hospitalization compared with Delta (adjusted hazard ratio [aHR] = 0.50, 95% confidence interval [CI] = 0.43 to 0.59), a 73% lower risk of ICU admission (aHR = 0.27, 95% CI = 0.19 to 0.38), and a 5-day shorter hospital stay (aß = -5.03, 95% CI = -8.01 to -2.05). CONCLUSIONS: Our analysis supports findings from other studies that have demonstrated lower risk of severe outcomes in Omicron-infected individuals relative to Delta.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , British Columbia/epidemiology , SARS-CoV-2/genetics , Retrospective Studies , COVID-19/epidemiology
4.
BMJ Open ; 12(10): e064804, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36198468

ABSTRACT

OBJECTIVES: To assess the extent to which protection of healthcare workers (HCWs) as COVID-19 emerged was associated with economic inequality among and within countries. DESIGN: Cross-sectional analysis of associations of perceptions of workplace risk acceptability and mitigation measure adequacy with indicators of respondents' respective country's economic income level (World Bank assessment) and degree of within-country inequality (Gini index). SETTING: A global self-administered online survey. PARTICIPANTS: 4977 HCWs and healthcare delivery stakeholders from 161 countries responded to health and safety risk questions and a subset of 4076 (81.2%) answered mitigation measure questions. The majority (65%) of study participants were female. RESULTS: While the levels of risk being experienced at the pandemic's onset were consistently deemed as unacceptable across all groupings, participants from countries with less income inequality were somewhat less likely to report unacceptable levels of risk to HCWs regarding both workplace environment (OR=0.92, p=0.012) and workplace organisational factors (OR=0.93, p=0.017) compared with counterparts in more unequal national settings. In contrast, considerable variation existed in the degree to which mitigation measures were considered adequate. Adjusting for other influences through a logistic regression analysis, respondents from lower middle-income and low-income countries were comparatively much more likely to assess both occupational health and safety (OR=10.91, p≤0.001) and infection prevention and control (IPC) (OR=6.61, p=0.001) protection measures as inadequate, despite much higher COVID-19 rates in wealthier countries at the time of the survey. Greater within-country income inequality was also associated with perceptions of less adequate IPC measures (OR=0.94, p=0.025). These associations remained significant when accounting for country-level differences in occupational and gender composition of respondents, including specifically when only female care providers, our study's largest and most at-risk subpopulation, were examined. CONCLUSIONS: Economic inequality threatens resilience of health systems that rely on health workers working safely to provide needed care during emerging pandemics.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Female , Health Personnel , Humans , Male , Pandemics/prevention & control , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...