Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 49(12): 7715-7732, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36031929

ABSTRACT

BACKGROUND: Cone-beam computed tomography (CBCT) allows for patient setup and positioning, and potentially dose verification or adaptive replanning prior to each treatment delivery. Poor CBCT image quality due to scatter artifacts and patient motion has been a major limiting factor. A new image reconstruction algorithm was recently clinically implemented for improving image quality through iterative reconstruction (iCBCT). PURPOSE: This study aims to characterize iCBCT image quality, establish image value (HU)-to-relative electron density (RED) calibration curves for dose calculation, and assess the dosimetric accuracy for different anatomical sites. MATERIAL AND METHODS: Both conventional CBCT and iCBCT scans were acquired from a Varian TrueBeam On-Board Imager system. A Catphan 604 phantom was scanned to compare image quality between the traditional Feldkamp-Davis-Kress (FDK) and novel iterative reconstruction techniques. Computerized Imaging Reference Systems (CIRS) electron density phantom was used to construct site-specific HU-RED curves corresponding to various scan settings. The CIRS Dynamic Thorax phantom, Rando pelvis phantom, and BrainLab head phantom were used for assessing dosimetric accuracy calculated on iCBCT images, compared to that on traditional FDK-based CBCT images. All phantoms were scanned on a computed tomography (CT) to obtain baseline HU values for comparison. RESULTS: Test results obtained from Catphan showed statistically significant improvement with iCBCT, compared to FDK CBCT. Average HU differences from the baseline CT values were improved to within ±30 HU for iCBCT, compared to FDK CBCT for phantom studies. Dose calculated on iCBCT for both phantoms and patient cases directly using baseline HU-RED calibration from CT showed 0.5%-2.0% accuracy from the baseline dose calculated on CT, which is comparable to doses calculated using site-specific HU-RED calibration curves. CONCLUSION: iCBCT provides improved image quality, improved HU accuracy compared to CT baseline, and has potential to provide online dose verification as part of the adaptive radiotherapy workflow directly using the baseline HU-RED calibration curve from CT.


Subject(s)
Cone-Beam Computed Tomography , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Cone-Beam Computed Tomography/methods , Tomography, X-Ray Computed , Radiometry , Pelvis , Phantoms, Imaging , Image Processing, Computer-Assisted/methods , Algorithms
2.
J Appl Clin Med Phys ; 18(4): 76-83, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28503916

ABSTRACT

This work is to show which is more relevant to cause local failures (LFs) due to patient setup uncertainty between the planning target volume (PTV) underdosage and the potential target underdosage subject to patient setup uncertainties in head and neck (H&N) cancer treated with volumetric-modulated arc therapy (VMAT). Thirteen LFs in 10 H&N patients treated by VMAT were analyzed. Measures have been taken to minimize the chances of insufficient target delineation for these patients and the patients were clinically determined to have LF based on the PET/CT scan results by an experienced radiologist and then reviewed by a second experienced radiation oncologist. Two methods were used to identify the possible locations of LF due to underdosage: (a) examining the standard VMAT plan, in which the underdosed volume in the nominal dose distribution (UVN) was generated by subtracting the volumes receiving the prescription doses from PTVs, and (b) plan robustness analysis, in which in addition to the nominal dose distribution, six perturbed dose distributions were created by translating the CT iso-center in three cardinal directions by the PTV margin. The coldest dose distribution was represented by the minimum of the seven doses in each voxel. The underdosed volume in the coldest dose distribution (UVC) was generated by subtracting the volumes receiving the prescription doses in the coldest dose distribution from the volumes receiving the prescription doses in the nominal dose distribution. UVN and UVC were subsequently examined for spatial association with the locations of LF. The association was tested using the binominal distribution and the Fisher's exact test of independence. We found that of 13 LFs, 11 were associated with UVCs (P = 0.011), while three were associated with UVNs (P = 0.99). We concluded that the possible target underdosage due to patient setup uncertainties appeared to be a more relevant factor associated with LF in VMAT for H&N cancer than the compromised PTV coverage at least for the patients included in this study.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/methods , Head and Neck Neoplasms/diagnostic imaging , Humans , Positron Emission Tomography Computed Tomography , Radiotherapy Dosage
3.
Pract Radiat Oncol ; 6(6): e269-e275, 2016.
Article in English | MEDLINE | ID: mdl-27025166

ABSTRACT

BACKGROUND: To compare plan robustness of volumetric modulated arc therapy (VMAT) with intensity modulated radiation therapy (IMRT) and to compare the effectiveness of 3 plan robustness quantification methods. METHODS AND MATERIALS: The VMAT and IMRT plans were created for 9 head and neck cancer patients. For each plan, 6 new perturbed dose distributions were computed using ±3 mm setup deviations along each of the 3 orientations. Worst-case analysis (WCA), dose-volume histogram (DVH) band (DVHB), and root-mean-square dose-volume histogram (RVH) were used to quantify plan robustness. In WCA, a shaded area in the DVH plot bounded by the DVHs from the lowest and highest dose per voxel was displayed. In DVHB, we displayed the envelope of all DVHs in band graphs of all the 7 dose distributions. The RVH represents the relative volume on the vertical axis and the root-mean-square-dose on the horizontal axis. The width from the first 2 methods at different target DVH indices (such as D95% and D5%) and the area under the RVH curve for the target were used to indicate plan robustness. Results were compared using Wilcoxon signed-rank test. RESULTS: The DVHB showed that the width at D95% of IMRT was larger than that of VMAT (unit Gy) (1.59 vs 1.18) and the width at D5% of IMRT was comparable to that of VMAT (0.59 vs 0.54). The WCA showed similar results between IMRT and VMAT plans (D95%: 3.28 vs 3.00; D5%: 1.68 vs 1.95). The RVH showed the area under the RVH curve of IMRT was comparable to that of VMAT (1.13 vs 1.15). No statistical significance was found in plan robustness between IMRT and VMAT. CONCLUSIONS: The VMAT is comparable to IMRT in terms of plan robustness. For the 3 quantification methods, WCA and DVHB are DVH parameter-dependent, whereas RVH captures the overall effect of uncertainties.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Aged , Aged, 80 and over , Female , Head and Neck Neoplasms/pathology , Humans , Male , Middle Aged , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...