Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 290(2010): 20230657, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37909084

ABSTRACT

A universal paradigm describing patterns of speciation across the tree of life has been debated for decades. In marine organisms, inferring patterns of speciation using contemporary and historical patterns of biogeography is challenging due to the deficiency of species-level phylogenies and information on species' distributions, as well as conflicting relationships between species' dispersal, range size and co-occurrence. Most research on global patterns of marine fish speciation and biogeography has focused on coral reef or pelagic species. Carangoidei is an ecologically important clade of marine fishes that use coral reef and pelagic environments. We used sequence capture of 1314 ultraconserved elements (UCEs) from 154 taxa to generate a time-calibrated phylogeny of Carangoidei and its parent clade, Carangiformes. Age-range correlation analyses of the geographical distributions and divergence times of sister species pairs reveal widespread sympatry, with 73% of sister species pairs exhibiting sympatric geographical distributions, regardless of node age. Most species pairs coexist across large portions of their ranges. We also observe greater disparity in body length and maximum depth between sympatric relative to allopatric sister species. These and other ecological or behavioural attributes probably facilitate sympatry among the most closely related carangoids.


Subject(s)
Fishes , Sympatry , Animals , Phylogeny , Coral Reefs , Genetic Speciation
2.
Mol Phylogenet Evol ; 186: 107841, 2023 09.
Article in English | MEDLINE | ID: mdl-37327832

ABSTRACT

Eleotridae (sleepers) and five smaller families are the earliest diverging lineages within Gobioidei. Most inhabit freshwaters in and around the Indo-Pacific, but Eleotridae also includes species that have invaded the Neotropics as well as several inland radiations in the freshwaters of Australia, New Zealand, and New Guinea. Previous efforts to infer phylogeny of these families have been based on sets of mitochondrial or nuclear loci and have yielded uncertain resolution of clades within Eleotridae. We expand the taxon sampling of previous studies and use genomic data from nuclear ultraconserved elements (UCEs) to infer phylogeny, then calibrate the hypothesis with recently discovered fossils. Our hypothesis clarifies ambiguously resolved relationships, provides a timescale for divergences, and indicates the core crown Eleotridae diverged over a short period 24.3-26.3 Ma in the late Oligocene. Within Eleotridae, we evaluate diversification dynamics with BAMM and find evidence for an overall slowdown in diversification over the past 35 Ma, but with a sharp increase 3.5 Ma in the genus Mogurnda, a clade of brightly colored species found in the freshwaters of Australia and New Guinea.


Subject(s)
Fishes , Perciformes , Humans , Animals , Phylogeny , Fishes/genetics , Perciformes/genetics , Mitochondria , Fossils
3.
Evolution ; 77(7): 1505-1521, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37094800

ABSTRACT

Geographic isolation is the primary driver of speciation in many vertebrate lineages. This trend is exemplified by North American darters, a clade of freshwater fishes where nearly all sister species pairs are allopatric and separated by millions of years of divergence. One of the only exceptions is the Lake Waccamaw endemic Etheostoma perlongum and its riverine sister species Etheostoma maculaticeps, which have no physical barriers to gene flow. Here we show that lacustrine speciation of E. perlongum is characterized by morphological and ecological divergence likely facilitated by a large chromosomal inversion. While E. perlongum is phylogenetically nested within the geographically widespread E. maculaticeps, there is a sharp genetic and morphological break coinciding with the lake-river boundary in the Waccamaw River system. Despite recent divergence, an active hybrid zone, and ongoing gene flow, analyses using a de novo reference genome reveal a 9 Mb chromosomal inversion with elevated divergence between E. perlongum and E. maculaticeps. This region exhibits striking synteny with known inversion supergenes in two distantly related fish lineages, suggesting deep evolutionary convergence of genomic architecture. Our results illustrate that rapid, ecological speciation with gene flow is possible even in lineages where geographic isolation is the dominant mechanism of speciation.


Subject(s)
Chromosome Inversion , Fishes , Genetic Speciation , Lakes , Chromosomes/genetics , Animals , Fishes/genetics , Phylogeny , Polymorphism, Single Nucleotide
4.
Nat Ecol Evol ; 6(8): 1211-1220, 2022 08.
Article in English | MEDLINE | ID: mdl-35835827

ABSTRACT

Spiny-rayed fishes (Acanthomorpha) dominate modern marine habitats and account for more than a quarter of all living vertebrate species. Previous time-calibrated phylogenies and patterns from the fossil record explain this dominance by correlating the origin of major acanthomorph lineages with the Cretaceous-Palaeogene mass extinction. Here we infer a time-calibrated phylogeny using ultraconserved elements that samples 91.4% of all acanthomorph families and investigate patterns of body shape disparity. Our results show that acanthomorph lineages steadily accumulated throughout the Cenozoic and underwent a significant expansion of among-clade morphological disparity several million years after the end-Cretaceous. These acanthomorph lineages radiated into and diversified within distinct regions of morphospace that characterize iconic lineages, including fast-swimming open-ocean predators, laterally compressed reef fishes, bottom-dwelling flatfishes, seahorses and pufferfishes. The evolutionary success of spiny-rayed fishes is the culmination of multiple species-rich and phenotypically disparate lineages independently diversifying across the globe under a wide range of ecological conditions.


Subject(s)
Biodiversity , Fishes , Animals , Biological Evolution , Extinction, Biological , Fishes/anatomy & histology , Fossils
5.
Syst Biol ; 71(1): 78-92, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34097063

ABSTRACT

The Neotropics harbor the most species-rich freshwater fish fauna on the planet, but the timing of that exceptional diversification remains unclear. Did the Neotropics accumulate species steadily throughout their long history, or attain their remarkable diversity recently? Biologists have long debated the relative support for these museum and cradle hypotheses, but few phylogenies of megadiverse tropical clades have included sufficient taxa to distinguish between them. We used 1288 ultraconserved element loci spanning 293 species, 211 genera, and 21 families of characoid fishes to reconstruct a new, fossil-calibrated phylogeny and infer the most likely diversification scenario for a clade that includes a third of Neotropical fish diversity. This phylogeny implies paraphyly of the traditional delimitation of Characiformes because it resolves the largely Neotropical Characoidei as the sister lineage of Siluriformes (catfishes), rather than the African Citharinodei. Time-calibrated phylogenies indicate an ancient origin of major characoid lineages and reveal a much more recent emergence of most characoid species. Diversification rate analyses infer increased speciation and decreased extinction rates during the Oligocene at around 30 Ma during a period of mega-wetland formation in the proto-Orinoco-Amazonas. Three species-rich and ecomorphologically diverse lineages (Anostomidae, Serrasalmidae, and Characidae) that originated more than 60 Ma in the Paleocene experienced particularly notable bursts of Oligocene diversification and now account collectively for 68% of the approximately 2150 species of Characoidei. In addition to paleogeographic changes, we discuss potential accelerants of diversification in these three lineages. While the Neotropics accumulated a museum of ecomorphologically diverse characoid lineages long ago, this geologically dynamic region also cradled a much more recent birth of remarkable species-level diversity. [Biodiversity; Characiformes; macroevolution; Neotropics; phylogenomics; ultraconserved elements.].


Subject(s)
Catfishes , Characiformes , Animals , Biodiversity , Fossils , Phylogeny
6.
Proc Biol Sci ; 286(1910): 20191502, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31506051

ABSTRACT

The fish clade Pelagiaria, which includes tunas as its most famous members, evolved remarkable morphological and ecological variety in a setting not generally considered conducive to diversification: the open ocean. Relationships within Pelagiaria have proven elusive due to short internodes subtending major lineages suggestive of rapid early divergences. Using a novel sequence dataset of over 1000 ultraconserved DNA elements (UCEs) for 94 of the 286 species of Pelagiaria (more than 70% of genera), we provide a time-calibrated phylogeny for this widely distributed clade. Some inferred relationships have clear precedents (e.g. the monophyly of 'core' Stromateoidei, and a clade comprising 'Gempylidae' and Trichiuridae), but others are unexpected despite strong support (e.g. Chiasmodontidae + Tetragonurus). Relaxed molecular clock analysis using node-based fossil calibrations estimates a latest Cretaceous origin for Pelagiaria, with crown-group families restricted to the Cenozoic. Estimated mean speciation rates decline from the origin of the group in the latest Cretaceous, although credible intervals for root and tip rates are broad and overlap in most cases, and there is higher-than-expected partitioning of body shape diversity (measured as fineness ratio) between clades concentrated during the Palaeocene-Eocene. By contrast, more direct measures of ecology show either no substantial deviation from a null model of diversification (diet) or patterns consistent with evolutionary constraint or high rates of recent change (depth habitat). Collectively, these results indicate a mosaic model of diversification. Pelagiarians show high morphological disparity and modest species richness compared to better-studied fish radiations in contrasting environments. However, this pattern is also apparent in other clades in open-ocean or deep-sea habitats, and suggests that comparative study of such groups might provide a more inclusive model of the evolution of diversity in fishes.


Subject(s)
Fishes , Phylogeny , Animals , Biodiversity , Biological Evolution , Ecosystem , Fossils , Genetic Speciation , Oceans and Seas , Tuna
7.
Nat Ecol Evol ; 2(4): 688-696, 2018 04.
Article in English | MEDLINE | ID: mdl-29531346

ABSTRACT

The Cretaceous-Palaeogene (K-Pg) mass extinction is linked to the rapid emergence of ecologically divergent higher taxa (for example, families and orders) across terrestrial vertebrates, but its impact on the diversification of marine vertebrates is less clear. Spiny-rayed fishes (Acanthomorpha) provide an ideal system for exploring the effects of the K-Pg on fish diversification, yet despite decades of morphological and molecular phylogenetic efforts, resolution of both early diverging lineages and enormously diverse subclades remains problematic. Recent multilocus studies have provided the first resolved phylogenetic backbone for acanthomorphs and suggested novel relationships among major lineages. However, these new relationships and associated timescales have not been interrogated using phylogenomic approaches. Here, we use targeted enrichment of >1,000 ultraconserved elements in conjunction with a divergence time analysis to resolve relationships among 120 major acanthomorph lineages and provide a new timescale for acanthomorph radiation. Our results include a well-supported topology that strongly resolves relationships along the acanthomorph backbone and the recovery of several new relationships within six major percomorph subclades. Divergence time analyses also reveal that crown ages for five of these subclades, and for the bulk of the species diversity in the sixth, coincide with the K-Pg boundary, with divergences between anatomically and ecologically distinctive suprafamilial clades concentrated in the first 10 million years of the Cenozoic.


Subject(s)
Biodiversity , Biological Evolution , Fishes/genetics , Phylogeny , Animals , Fish Proteins/analysis , Fishes/anatomy & histology
8.
BMC Evol Biol ; 16(1): 224, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27769164

ABSTRACT

BACKGROUND: Flatfish cranial asymmetry represents one of the most remarkable morphological innovations among vertebrates, and has fueled vigorous debate on the manner and rate at which strikingly divergent phenotypes evolve. A surprising result of many recent molecular phylogenetic studies is the lack of support for flatfish monophyly, where increasingly larger DNA datasets of up to 23 loci have either yielded a weakly supported flatfish clade or indicated the group is polyphyletic. Lack of resolution for flatfish relationships has been attributed to analytical limitations for dealing with processes such as nucleotide non-stationarity and incomplete lineage sorting (ILS). We tackle this phylogenetic problem using a sequence dataset comprising more than 1,000 ultraconserved DNA element (UCE) loci covering 45 carangimorphs, the broader clade containing flatfishes and several other specialized lineages such as remoras, billfishes, and archerfishes. RESULTS: We present a phylogeny based on UCE loci that unequivocally supports flatfish monophyly and a single origin of asymmetry. We document similar levels of discordance among UCE loci as in previous, smaller molecular datasets. However, relationships among flatfishes and carangimorphs recovered from multilocus concatenated and species tree analyses of our data are robust to the analytical framework applied and size of data matrix used. By integrating the UCE data with a rich fossil record, we find that the most distinctive carangimorph bodyplans arose rapidly during the Paleogene (66.0-23.03 Ma). Flatfish asymmetry, for example, likely evolved over an interval of no more than 2.97 million years. CONCLUSIONS: The longstanding uncertainty in phylogenetic hypotheses for flatfishes and their carangimorph relatives highlights the limitations of smaller molecular datasets when applied to successive, rapid divergences. Here, we recovered significant support for flatfish monophyly and relationships among carangimorphs through analysis of over 1,000 UCE loci. The resulting time-calibrated phylogeny points to phenotypic divergence early within carangimorph history that broadly matches with the predictions of adaptive models of lineage diversification.


Subject(s)
Biological Evolution , Flatfishes/anatomy & histology , Flatfishes/genetics , Animals , Fishes/anatomy & histology , Fishes/classification , Fishes/genetics , Flatfishes/classification , Fossils , Genetic Speciation , Phylogeny , Sequence Analysis, DNA
9.
Mol Phylogenet Evol ; 93: 172-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26265255

ABSTRACT

The percomorph fish clade Gobiiformes is a worldwide, tropical and temperate radiation with species occupying nearly all aquatic, and some semi-terrestrial, habitats. Early molecular phylogenetic studies led to the discovery of Gobiiformes, which contains Gobioidei, the gobies and sleepers, and a clade (Apogonoidei) consisting of Apogonidae and Kurtus, the cardinalfishes and nurseryfishes. Gobioidei is consistently resolved as monophyletic in molecular studies, and includes eight families whose members range from waterfall climbing stream gobies to several prominent lineages inhabiting coral reefs. The sister taxon to Gobioidei is also reliably resolved as Apogonoidei. Despite the consistent support for gobiiform monophyly in molecular studies, it is not known if percomorph lineages unsampled in molecular phylogenetic studies are closely related to Gobioidei or Apogonoidei. Here we assemble a large dataset of DNA sequence from ten protein-coding genes, sampling widely across Acanthomorpha and Percomorpha, including Gobioidei, Apogonidae, and Kurtus, along with representatives of all twelve families comprising the former Trachinoidei. The phylogenies inferred from the nuclear gene sequences show that Trachinoidei is polyphyletic, with constituent lineages spread widely among several major percomorph clades. Most notably, the sanddivers (Trichonotus) are resolved as the sister lineage of Gobioidei. This study clarifies the phylogenetic relationships of lineages previously classified in Trachinoidei, identifies Trichonotus as the sister lineage of gobies, provides a molecular phylogeny of the major lineages of Gobioidei, and offers suggested changes to percomorph classification.


Subject(s)
Fishes/genetics , Animals , Base Sequence , Female , Fish Proteins/genetics , Male , Phylogeny , Sequence Analysis, DNA
10.
BMC Evol Biol ; 15: 109, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26062690

ABSTRACT

BACKGROUND: Antarctic notothenioids are an impressive adaptive radiation. While they share recent common ancestry with several species-depauperate lineages that exhibit a relictual distribution in areas peripheral to the Southern Ocean, an understanding of their evolutionary origins and biogeographic history is limited as the sister lineage of notothenioids remains unidentified. The phylogenetic placement of notothenioids among major lineages of perciform fishes, which include sculpins, rockfishes, sticklebacks, eelpouts, scorpionfishes, perches, groupers and soapfishes, remains unresolved. We investigate the phylogenetic position of notothenioids using DNA sequences of 10 protein coding nuclear genes sampled from more than 650 percomorph species. The biogeographic history of notothenioids is reconstructed using a maximum likelihood method that integrates phylogenetic relationships, estimated divergence times, geographic distributions and paleogeographic history. RESULTS: Percophis brasiliensis is resolved, with strong node support, as the notothenioid sister lineage. The species is endemic to the subtropical and temperate Atlantic coast of southern South America. Biogeographic reconstructions imply the initial diversification of notothenioids involved the western portion of the East Gondwanan Weddellian Province. The geographic disjunctions among the major lineages of notothenioids show biogeographic and temporal correspondence with the fragmentation of East Gondwana. CONCLUSIONS: The phylogenetic resolution of Percophis requires a change in the classification of percomorph fishes and provides evidence for a western Weddellian origin of notothenioids. The biogeographic reconstruction highlights the importance of the geographic and climatic isolation of Antarctica in driving the radiation of cold-adapted notothenioids.


Subject(s)
Perciformes/classification , Perciformes/genetics , Animals , Antarctic Regions , Evolution, Molecular , Fish Proteins/genetics , Likelihood Functions , Perciformes/anatomy & histology , Phylogeny , South America
11.
Mol Phylogenet Evol ; 84: 158-65, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25615427

ABSTRACT

Inference of evolutionary relationships among closely related darter species (Teleostei: Percidae) has traditionally proven challenging due to a lack of sufficient numbers of informative morphological characters or reliance on mtDNA sequences. These factors have contributed to longstanding uncertainty of the monophyly of many described taxonomic groups. Although multi-locus data are now available for most darter species, uncertainty has persisted regarding the relationships of some major lineages. Here, we investigate the relationships of darters classified in Goneaperca, a clade of 46 species, many of which are characterized by distinct nuptial displays and male-only parental care. Previous phylogenetic analyses of morphological and molecular data have failed to provide strong resolution of relationships among major Goneaperca subclades, and especially the monophyly of Catonotus. We apply coalescent and phylogenetic analyses to a dataset that includes intraspecific sampling for nearly all species of Goneaperca for 13 nuclear genes. Our coalescent species tree analyses resolved a strongly supported sister relationship between Boleosoma and a monophyletic Catonotus. Ancestor state reconstructions using the posterior distribution of these newly inferred phylogenies support a single origin of male-only parental care in the most recent common ancestor of Boleosoma and Catonotus.


Subject(s)
Biological Evolution , Nesting Behavior , Perches/classification , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , Female , Male , Models, Genetic , Perches/physiology , Sequence Analysis, DNA
13.
Proc Biol Sci ; 280(1766): 20131200, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23864599

ABSTRACT

The adhesion disc of living remoras (Echeneoidea: Echeneidae) represents one of the most remarkable structural innovations within fishes. Although homology between the spinous dorsal fin of generalized acanthomorph fishes and the remora adhesion disc is widely accepted, the sequence of evolutionary-rather than developmental-transformations leading from one to the other has remained unclear. Here, we show that the early remora †Opisthomyzon (Echeneoidea: †Opisthomyzonidae), from the early Oligocene (Rupelian) of Switzerland, is a stem-group echeneid and provides unique insights into the evolutionary assembly of the unusual body plan characteristic of all living remoras. The adhesion disc of †Opisthomyzon retains ancestral features found in the spiny dorsal fins of remora outgroups, and corroborates developmental interpretations of the homology of individual skeletal components of the disc. †Opisthomyzon indicates that the adhesion disc originated in a postcranial position, and that other specializations (including the origin of pectination, subdivision of median fin spines into paired lamellae, increase in segment count and migration to a supracranial position) took place later in the evolutionary history of remoras. This phylogenetic sequence of transformation finds some parallels in the order of ontogenetic changes to the disc documented for living remoras.


Subject(s)
Biological Evolution , Fossils , Perciformes/anatomy & histology , Animals , Bayes Theorem , Perciformes/classification , Phylogeny , Skull/anatomy & histology
14.
Evolution ; 67(2): 388-402, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23356612

ABSTRACT

Introgressive hybridization and incomplete lineage sorting complicate the inference of phylogeny, and available species-tree methods do not simultaneously account for these processes. Both hybridization and ancestral polymorphism have been invoked to explain divergent phylogenies inferred from different datasets for Stigmacerca, a clade of 11 North American darter species. Species of Stigmacerca are characterized by a mating system involving parental care with males guarding nesting territories and fertilized eggs. Males of four species of Stigmacerca develop egg-mimic nuptial structures on their second dorsal fins during the breeding season. Previous phylogenies suggest contrasting scenarios for the evolution of this nuptial trait. Using a combination of coalescent-based methods, we analyzed a dataset comprising a mitochondrial gene and 15 nuclear loci to estimate relationships and simultaneously test for introgressive hybridization. Our analyses identified several instances of interspecific gene flow involving both cytoplamsmic haplotypes and nuclear alleles. The new phylogeny was used to infer a single origin and recent loss of egg-mimic structures in Stigmacerca and led to the discovery of a phylogenetically distinct species. Our results highlight the limited strategies available to account for introgressive hybridization in the inference of species relationships and the likely effects of this process on reconstructing trait evolution.


Subject(s)
Evolution, Molecular , Gene Flow , Nesting Behavior , Phylogeny , Sexual Behavior, Animal , Alleles , Animal Fins/anatomy & histology , Animals , Chimera , Genes, Mitochondrial/genetics , Genetic Speciation , Haplotypes , Male , Perches/genetics
15.
Syst Biol ; 61(1): 63-79, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21828082

ABSTRACT

The rapid accumulation of multilocus data sets has led to dramatic advances in methodologies for estimating evolutionary relationships among closely related species, but relatively less advancement has been made in methods for discriminating between competing species delimitation hypotheses. Multilocus data sets provide an advantage in testing species delimitation scenarios because they offer a direct test of species monophyly and aid in the biological interpretation of such phenomena as allele-sharing and deep coalescent events. Most species tree estimation methods that are designed to analyze multilocus data sets require the a priori assignment of individuals to species categories and therefore do not provide a strategy to directly test competing species delimitation scenarios. An approach was recently proposed that utilizes a coalescent-based species tree estimation method to inform species delimitation decisions by comparing likelihood scores that measure the fit of gene trees within a given species tree. We use a multilocus nuclear and mitochondrial DNA sequence data set to both reexamine a recently proposed species delimitation scenario in the Etheostoma simoterum species complex and test the utility of species tree estimation methods in testing species delimitation hypotheses. Descriptions of species in the E. simoterum species complex of snubnose darters, a group of six teleost freshwater fish species, are based largely on male nuptial coloration. Most of the putative species are nonmonophyletic at every examined locus. Using a novel combination of Bayesian-estimated gene tree topologies, Bayesian phylogenetic species tree inferences, coalescent simulations, and examination of phenotypic variation, we assess the occurrence of shared alleles among species, and we propose that results from our analyses support a three-species rather than a six-species delimitation scenario in the E. simoterum complex. We found that comparing likelihood scores from the species tree estimation approach used across many potential delimitation scenarios resulted in a systematic bias toward over-splitting in the E. simoterum complex and failed to support a species delimitation scenario that was consistent with geography, phenotype, or any previous species delimitation hypothesis. Despite common expectations, we demonstrate that application of molecular approaches to species delimitation can result in the recognition of fewer, instead of a larger number of species. In addition, our analyses highlight the importance of phenotypic character information in providing an independent assessment of alternative species delimitation hypotheses in the E. simoterum species complex.


Subject(s)
Classification/methods , Evolution, Molecular , Perches/classification , Perches/genetics , Animals , Bayes Theorem , Cell Nucleus/genetics , Computer Simulation , DNA, Mitochondrial/genetics , Female , Likelihood Functions , Male , Molecular Sequence Data , Perches/anatomy & histology , Phylogeny , Phylogeography , Pigmentation , Polymerase Chain Reaction/veterinary , Population Density , Sequence Analysis, DNA , United States
16.
Syst Biol ; 60(5): 565-95, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21775340

ABSTRACT

Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.


Subject(s)
Evolution, Molecular , Perches/classification , Perches/genetics , Animals , Bayes Theorem , Cell Nucleus/genetics , Cytochrome b Group/genetics , DNA, Mitochondrial/genetics , Exons/genetics , Genes, RAG-1/genetics , Haplotypes , Hybridization, Genetic , Introns/genetics , Molecular Sequence Data , Perciformes/classification , Perciformes/genetics , Phylogeny , Ribosomal Proteins/genetics , Sequence Analysis, DNA
17.
J Child Psychol Psychiatry ; 43(6): 695-704, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12236605

ABSTRACT

BACKGROUND: This annotation describes the uses of randomised controlled trials (RCTs) in clinical child psychology and psychiatry. METHOD: It explores the scientific basis for randomised designs, the conceptual and methodological issues that can arise when using them, alternative methods, and future directions. RESULTS: There are many issues that have to be tackled when using randomised trials to answer questions about the effectiveness of interventions used by child mental health professionals. The most important are conceptual issues concerning the design of these studies, practical issues, and issues about the interpretation of the results. There are some situations in which randomised trials are not possible or ideal and alternative strategies may therefore be needed. Future RCTs should be more explicit about whether their primary purpose is to further scientific knowledge or to evaluate the benefit of a treatment in routine clinical practice. Future trials should also have outcomes of unequivocal significance and be reported in accordance with standardised guidelines. CONCLUSIONS: Well-designed and unambiguously reported RCTs usually provide the best possible evidence about the effectiveness of an intervention. RCTs are not, however, the only way of establishing cause and effect and their results should always be interpreted in the light of other evidence.


Subject(s)
Psychiatry/methods , Psychology/methods , Randomized Controlled Trials as Topic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...