Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3082, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248261

ABSTRACT

Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Animals , Humans , Influenza, Human/epidemiology , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Animals, Wild , Birds , Poultry , Phylogeny , Mammals
2.
Exp Mol Med ; 53(5): 737-749, 2021 05.
Article in English | MEDLINE | ID: mdl-33953324

ABSTRACT

The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.


Subject(s)
Influenza, Human/epidemiology , Animals , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Influenza A virus/isolation & purification , Influenza, Human/prevention & control , Pandemics/prevention & control , Risk Assessment , World Health Organization
3.
J Antimicrob Chemother ; 76(4): 957-960, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33351916

ABSTRACT

BACKGROUND: Baloxavir marboxil is an antiviral drug that targets the endonuclease activity of the influenza virus polymerase acidic (PA) protein. PA I38T/M/F substitutions reduce its antiviral efficacy. OBJECTIVES: To understand the effects of the 19 possible amino acid (AA) substitutions at PA 38 on influenza A(H1N1)pdm09 polymerase activity and inhibition by baloxavir acid, the active metabolite of baloxavir marboxil. METHODS: Influenza A(H1N1)pdm09 viral polymerase complexes containing all 19 I38X AA substitutions were reconstituted in HEK293T cells in a mini-replicon assay. Polymerase complex activity and baloxavir inhibitory activity were measured in the presence or absence of 50 nM baloxavir acid. RESULTS: Only three substitutions (R, K, P) reduced polymerase activity to <79% of I38-WT. When compared with the prototypical baloxavir marboxil resistance marker T38, 5 substitutions conferred 10%-35% reductions in baloxavir acid inhibitory activity (M, L, F, Y, C) and 11 substitutions conferred >50% reductions (R, K, S, N, G, W, A, Q, E, D, H), while two substitutions (V, P) maintained baloxavir acid inhibitory activity. CONCLUSIONS: Most PA 38 substitutions permit a functional replication complex retaining some drug resistance in the mini-replicon assay. This study provides a targeted approach for virus rescue and analysis of novel baloxavir marboxil reduced-susceptibility markers, supports the consideration of a broader range of these markers during antiviral surveillance and adds to the growing knowledge of baloxavir marboxil resistance profiles.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dibenzothiepins , Drug Resistance, Viral , HEK293 Cells , Humans , Influenza, Human/drug therapy , Morpholines/pharmacology , Morpholines/therapeutic use , Oxazines/pharmacology , Pyridones/pharmacology , Triazines/pharmacology
4.
Cytometry A ; 97(7): 706-712, 2020 07.
Article in English | MEDLINE | ID: mdl-31769208

ABSTRACT

Bloodstream infections, especially those that are antibiotic resistant, pose a significant challenge to health care leading to increased hospitalization time and patient mortality. There are different facets to this problem that make these diseases difficult to treat, such as the difficulty to detect bacteria in the blood and the poorly understood mechanism of bacterial invasion into and out of the circulatory system. However, little progress has been made in developing techniques to study bacteria dynamics in the bloodstream. Here, we present a new approach using an in vivo flow cytometry platform for real-time, noninvasive, label-free, and quantitative monitoring of the lifespan of green fluorescent protein-expressing Staphylococcus aureus and Pseudomonas aeruginosa in a murine model. We report a relatively fast average rate of clearance for S. aureus (k = 0.37 ± 0.09 min-1 , half-life ~1.9 min) and a slower rate for P. aeruginosa (k = 0.07 ± 0.02 min-1 , half-life ~9.6 min). We also observed what appears to be two stages of clearance for S. aureus, while P. aeruginosa appeared only to have a single stage of clearance. Our results demonstrate that an advanced research tool can be used for studying the dynamics of bacteria cells directly in the bloodstream, providing insight into the progression of infectious diseases in circulation. © 2019 International Society for Advancement of Cytometry.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Anti-Bacterial Agents , Disease Models, Animal , Humans , Mice , Pseudomonas aeruginosa
5.
Sci Rep ; 9(1): 12439, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455790

ABSTRACT

Photoswitchable fluorescent proteins (PFPs) that can change fluorescence color upon excitation have revolutionized many applications of light such as tracking protein movement, super-resolution imaging, identification of circulating cells, and optical data storage. Nevertheless, the relatively weak fluorescence of PFPs limits their applications in biomedical imaging due to strong tissue autofluorecence background. Conversely, plasmonic nanolasers, also called spasers, have demonstrated potential to generate super-bright stimulated emissions even inside single cells. Nevertheless, the development of photoswitchable spasers that can shift their stimulated emission color in response to light is challenging. Here, we introduce the novel concept of spasers using a PFP layer as the active medium surrounding a plasmonic core. The proof of principle was demonstrated by synthesizing a multilayer nanostructure on the surface of a spherical gold core, with a non-absorbing thin polymer shell and the PFP Dendra2 dispersed in the matrix of a biodegradable polymer. We have demonstrated photoswitching of spontaneous and stimulated emission in these spasers below and above the spasing threshold, respectively, at different spectral ranges. The plasmonic core of the spasers serves also as a photothermal (and potentially photoacoustic) contrast agent, allowing for photothermal imaging of the spasers. These results suggest that multimodal photoswitchable spasers could extend the traditional applications of spasers and PFPs in laser spectroscopy, multicolor cytometry, and theranostics with the potential to track, identify, and kill abnormal cells in circulation.


Subject(s)
Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Protein Engineering
6.
Int J Hyperthermia ; 34(2): 209-219, 2018 03.
Article in English | MEDLINE | ID: mdl-29025325

ABSTRACT

BACKGROUND: We previously demonstrated that a photoactivatable therapeutic approach employing antibiotic-loaded, antibody-conjugated, polydopamine (PDA)-coated gold nanocages (AuNCs) could be used for the synergistic killing of bacterial cells within a biofilm. The approach was validated with a focus on Staphylococcus aureus using an antibody specific for staphylococcal protein A (Spa) and an antibiotic (daptomycin) active against Gram-positive cocci including methicillin-resistant S. aureus (MRSA). However, an important aspect of this approach is its potential therapeutic versatility. METHODS: In this report, we evaluated this versatility by examining the efficacy of AuNC formulations generated with alternative antibodies and antibiotics targeting S. aureus and alternative combinations targeting the Gram-negative pathogen Pseudomonas aeruginosa. RESULTS: The results confirmed that daptomycin-loaded AuNCs conjugated to antibodies targeting two different S. aureus lipoproteins (SACOL0486 and SACOL0688) also effectively kill MRSA in the context of a biofilm. However, our results also demonstrate that antibiotic choice is critical. Specifically, ceftaroline and vancomycin-loaded AuNCs conjugated to anti-Spa antibodies were found to exhibit reduced efficacy relative to daptomycin-loaded AuNCs conjugated to the same antibody. In contrast, gentamicin-loaded AuNCs conjugated to an antibody targeting a conserved outer membrane protein were highly effective against P. aeruginosa biofilms. CONCLUSIONS: These results confirm the therapeutic versatility of our approach. However, to the extent that its synergistic efficacy is dependent on the ability to achieve both a lethal photothermal effect and the thermally controlled release of a sufficient amount of antibiotic, they also demonstrate the importance of carefully designing appropriate antibody and antibiotic combinations to achieve the desired therapeutic synergy.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/therapy , Gold/metabolism , Nanoparticles/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Infections/pathology , Biofilms , Humans
7.
Sci Rep ; 6: 36417, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27824110

ABSTRACT

Photoswitchable fluorescent proteins with controllable light-dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive light-dark states and spectral shifts in absorption can be switched through controllable photothermal heating of doped nanoparticles. The proof-of-concept is demonstrated through the use of two different types of temperature-sensitive dyes doped with magnetic nanoparticles and reversibly photoswitched by a near-infrared laser. Photoacoustic imaging revealed the high contrast of these probes, which is sufficient for their visualization in cells and deep tissue. Our results suggest that these new photoswitchable multicolour probes can be used for multimodal cellular diagnostics and potentially for magnetic and photothermal therapy.


Subject(s)
Magnetite Nanoparticles/chemistry , Molecular Probes/chemistry , Photoacoustic Techniques/methods , Cell Line, Tumor , Color , Humans , Infrared Rays , Microscopy , Spectrophotometry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...