Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 24(7): 1247-57, 2016 08.
Article in English | MEDLINE | ID: mdl-27117222

ABSTRACT

Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, ß-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy.


Subject(s)
Capsid Proteins/genetics , Central Nervous System/metabolism , Dependovirus/physiology , Genetic Vectors/genetics , Muscles/metabolism , Transduction, Genetic , Viral Tropism , Animals , Capsid Proteins/chemistry , Dependovirus/classification , Gene Expression , Gene Transfer Techniques , Genes, Reporter , Genetic Therapy , Genetic Vectors/administration & dosage , Humans , Mice , Models, Molecular , Protein Conformation , Transgenes
2.
Mol Ther ; 24(4): 726-35, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26708003

ABSTRACT

Effective gene delivery to the central nervous system (CNS) is vital for development of novel gene therapies for neurological diseases. Adeno-associated virus (AAV) vectors have emerged as an effective platform for in vivo gene transfer, but overall neuronal transduction efficiency of vectors derived from naturally occurring AAV capsids after systemic administration is relatively low. Here, we investigated the possibility of improving CNS transduction of existing AAV capsids by genetically fusing peptides to the N-terminus of VP2 capsid protein. A novel vector AAV-AS, generated by the insertion of a poly-alanine peptide, is capable of extensive gene transfer throughout the CNS after systemic administration in adult mice. AAV-AS is 6- and 15-fold more efficient than AAV9 in spinal cord and cerebrum, respectively. The neuronal transduction profile varies across brain regions but is particularly high in the striatum where AAV-AS transduces 36% of striatal neurons. Widespread neuronal gene transfer was also documented in cat brain and spinal cord. A single intravenous injection of an AAV-AS vector encoding an artificial microRNA targeting huntingtin (Htt) resulted in 33-50% knockdown of Htt across multiple CNS structures in adult mice. This novel AAV-AS vector is a promising platform to develop new gene therapies for neurodegenerative disorders.


Subject(s)
Capsid Proteins/metabolism , Central Nervous System/metabolism , Peptides/genetics , Transduction, Genetic , Animals , CHO Cells , Capsid Proteins/genetics , Cats , Cell Line , Cricetulus , Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/administration & dosage , Huntingtin Protein/antagonists & inhibitors , Huntingtin Protein/genetics , Mice , Peptides/metabolism , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...