Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Eur J Pharm Sci ; 188: 106519, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37478583

ABSTRACT

Tetralysal® is a Galderma oral drug product (DP) marketed for the treatment of acne. Tetralysal® is sold in capsules containing either 150 mg or 300 mg of the drug substance. In the British Pharmacopoeia monograph for Lymecycline Capsules, the impurities already specified in the drug substance (A-G), visible in the European Pharmacopoeia 〈1654〉, are also specified together with an unidentified impurity at RRT 1.6 (Impurity J). Based on both monographs Galderma has focused on characterizing most of specified and unspecified impurities to better understand the stability and degradation processes of the formulation. In this manuscript, through both formal synthesis, preparative LCMS and formal degradation studies, we are the first group to confirm the structural identities of 5 unidentified impurities (Impurity J (RRT 1.6), RRT 2.2, 2.4, 2.6 and 3.4), conditions which exacerbate the formation of all 5 impurities and response factors for RRT 2.2, 2.6 and 3.4.


Subject(s)
Drug Contamination , Lymecycline , Chromatography, High Pressure Liquid
2.
J Pharm Biomed Anal ; 220: 114993, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36007309

ABSTRACT

Lymecycline is the drug substance (DS) used in the Galderma drug product Tetralysal® capsules with 7 impurities currently described in the pharmacopeia labelled as A-G. In the current monograph, the structural identity of all impurities except E and F have been formally identified. In this manuscript, through both formal synthesis and preparative chromatography, we are the first group to confirm the structural identity, response factor of Impurity F and conditions which exacerbate the formation of both impurities.


Subject(s)
Drug Contamination , Lymecycline , Capsules , Chromatography, High Pressure Liquid/methods , Drug Contamination/prevention & control
3.
Beilstein J Org Chem ; 17: 156-165, 2021.
Article in English | MEDLINE | ID: mdl-33564326

ABSTRACT

In our hands, efficient access to the 4-amino-3-carboxamide disubstituted pyridine-2(1H)-one kinase hinge-binder motif proved to be more challenging than anticipated requiring a significant investment in route scouting and optimization. This full paper focuses on the synthesis issues that we encountered during our route exploration and the original solutions we found that helped us to identify two optimized library-style processes to prepare our large kinase inhibitor library.

4.
ACS Med Chem Lett ; 10(11): 1561-1567, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749911

ABSTRACT

Minor structural modifications-sometimes single atom changes-can have a dramatic impact on the properties of compounds. This is illustrated here on structures related to known mTOR inhibitor Sapanisertib. Subtle changes in the hinge binder lead to strikingly different overall profiles with changes in physical properties, metabolism, and kinase selectivity.

5.
Bioorg Med Chem Lett ; 28(17): 2985-2992, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30122227
6.
Bioorg Med Chem Lett ; 28(8): 1269-1273, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29571573

ABSTRACT

Progress in the identification of suitable RORγ inverse agonists as clinical candidates has been hampered by the high lipophilicity that seems required for high potency on this nuclear receptor. In this context, we decided to focus on the replacement of the hydroxymethyl group found on known modulators to determine if more polarity could be tolerated in this position. SAR of the replacement of this moiety is presented in this article leading to the identification of sulfoximine derivatives as potent modulators with pharmacological activity in the in vivo mouse Imiquimod psoriasis model.


Subject(s)
Imines/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Sulfonamides/pharmacology , Sulfoxides/pharmacology , Animals , Drug Inverse Agonism , Female , Humans , Imines/chemical synthesis , Imines/chemistry , Ligands , Mice, Inbred BALB C , Molecular Structure , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfoxides/chemical synthesis , Sulfoxides/chemistry
7.
Bioorg Med Chem ; 26(4): 945-956, 2018 02 15.
Article in English | MEDLINE | ID: mdl-28818461

ABSTRACT

Targeting the TNFα pathway is a validated approach to the treatment of psoriasis. In this pathway, TACE stands out as a druggable target and has been the focus of in-house research programs. In this article, we present the discovery of clinical candidate 26a. Starting from hits plagued with poor solubility or genotoxicity, 26a was identified through thorough multiparameter optimisation. Showing robust in vivo activity in an oxazolone-mediated inflammation model, the compound was selected for development. Following a polymorph screen, the hydrochloride salt was selected and the synthesis was efficiently developed to yield the API in 47% overall yield.


Subject(s)
ADAM17 Protein/antagonists & inhibitors , Enzyme Inhibitors/chemistry , ADAM17 Protein/metabolism , Administration, Topical , Animals , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Female , Humans , Hydroxamic Acids/chemistry , Mice , Mice, Hairless , Microsomes, Liver/metabolism , Oxazolone/toxicity , Psoriasis/drug therapy , Psoriasis/pathology , Skin Diseases/chemically induced , Skin Diseases/prevention & control , Skin Diseases/veterinary , Solubility , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
8.
Bioorg Med Chem Lett ; 27(24): 5373-5377, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29157864

ABSTRACT

Virtual fragmentation of a library of 12,000 compounds inspired by natural products led to a dataset of 153,000 fragments that was used as a source to identify effective P2-P3 scaffold replacement solutions for peptidic Caspase-1 inhibitors. Our strategy led to the identification of an original 2-azabicyclo-octane scaffold (2-ABO) that was further elaborated into the potent Caspase-1 inhibitor CD10847 (IC50 = 17 nM). The crystal structure of Caspase-1 in complex with CD10847 was obtained, and its binding mode was shown to be similar to the one predicted by docking and in good agreement with other known inhibitors.


Subject(s)
4-Butyrolactone/analogs & derivatives , Caspase 1/chemistry , Caspase Inhibitors/chemistry , Dipeptides/chemistry , 4-Butyrolactone/chemical synthesis , 4-Butyrolactone/chemistry , 4-Butyrolactone/metabolism , Azabicyclo Compounds/chemistry , Azabicyclo Compounds/metabolism , Binding Sites , Biological Products/chemistry , Biological Products/metabolism , Caspase 1/metabolism , Caspase Inhibitors/metabolism , Crystallography, X-Ray , Dipeptides/chemical synthesis , Dipeptides/metabolism , Hydrogen Bonding , Inhibitory Concentration 50 , Molecular Conformation , Molecular Docking Simulation , Protein Structure, Tertiary
9.
Bioorg Med Chem Lett ; 27(13): 3030-3035, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28526367

ABSTRACT

We report the discovery of a novel aminopyrazine series of PI3Kα inhibitors, designed by hybridizing two known scaffolds of PI3K inhibitors. We describe the progress achieved from the first compounds plagued with poor general kinase selectivity to compounds showing high selectivity for PI3Kα over PI3Kß and excellent general kinase selectivity. This effort culminated with the identification of compound 5 displaying high potency and selectivity, and suitable physiochemical and pharmacokinetic properties for oral administration. In vivo, compound 5 showed good inhibition of tumour growth (86% tumour growth inhibition at 50mg/kg twice daily orally) in the MCF7 xenograft model in mice.


Subject(s)
Drug Discovery , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Class I Phosphatidylinositol 3-Kinases , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 27(8): 1848-1853, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28274635

ABSTRACT

Targeting the Tumor Necrosis Factor α signalling with antibodies has led to a revolution in the treatment of psoriasis. Locally inhibiting Tumor Necrosis Factor α Converting Enzyme (TACE or ADAM17) could potentially mimic those effects and help treat mild to moderate psoriasis, without the reported side effect of systemic TACE inhibitors. Efforts to identify new TACE inhibitors are presented here. Enzymatic SAR as well as ADME and physico-chemistry data are presented. This study culminated in the identification of potent enzymatic inhibitors. Suboptimal cellular activity of this series is discussed in the context of previously published results.


Subject(s)
ADAM17 Protein/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/chemistry , ADAM17 Protein/metabolism , Administration, Topical , Humans , Psoriasis/drug therapy , Psoriasis/enzymology
11.
Bioorg Med Chem Lett ; 26(23): 5802-5808, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27815118

ABSTRACT

Targeting the IL17 pathway and more specifically the nuclear receptor RORγ is thought to be beneficial in multiple skin disorders. The Letter describes the discovery of phenoxyindazoles and thiophenoxy indazoles as potent RORγ inverse agonists. Optimization of the potency and efforts to mitigate the phototoxic liability of the series are presented. Finally, crystallization of the lead compound revealed that the series bound to an allosteric site of the nuclear receptor. Such compounds could be useful as tool compounds for understanding the impact of topical treatment on skin disease models.


Subject(s)
Indazoles/chemistry , Indazoles/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Drug Inverse Agonism , Humans , Molecular Docking Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 25(22): 5155-62, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26475521

ABSTRACT

Starting from potent inhibitors of PI3Kα having poor general kinase selectivity (e.g., 1 and 2), optimisation of this series led to the identification of 25, a potent inhibitor of PI3Kα (wild type, E545K and H1047R mutations) and PI3Kδ, selective versus PI3Kß and PI3Kγ, with excellent general kinase selectivity. Compound 25 displayed low metabolic turnover and suitable physical properties for oral administration. In vivo, compound 25 showed pharmacodynamic modulation of AKT phosphorylation and near complete inhibition of tumour growth (93% tumour growth inhibition) in a murine H1047R PI3Kα mutated SKOV-3 xenograft tumour model after chronic oral administration at 25mg/kg b.i.d. Compound 25, also known as AZD8835, is currently in phase I clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Oxadiazoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Dogs , Humans , Mice , Mice, Nude , Mice, SCID , Molecular Docking Simulation , Oxadiazoles/chemical synthesis , Piperidines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Rats , Xenograft Model Antitumor Assays
13.
Bioorg Med Chem Lett ; 25(13): 2679-85, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25980912

ABSTRACT

Starting from compound 1, a potent PI3Kα inhibitor having poor general kinase selectivity, we used structural data and modelling to identify key exploitable differences between PI3Kα and the other kinases. This approach led us to design chemical modifications of the central pyrazole, which solved the poor kinase selectivity seen as a strong liability for the initial compound 1. Amongst the modifications explored, a 1,3,4-triazole ring (as in compound 4) as a replacement of the initial pyrazole provided good potency against PI3Kα, with excellent kinase selectivity.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Amino Acid Sequence , Binding Sites , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/genetics , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Drug Design , Enzyme Inhibitors/chemical synthesis , Humans , Models, Molecular , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/chemistry , Mutant Proteins/genetics , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/genetics , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology
14.
Chem Commun (Camb) ; 49(70): 7744-6, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23877629

ABSTRACT

An efficient synthesis of racemic or optically active α-amino acids by modified-Mitsunobu alkylation of a racemic or chiral glycine template from alcohols was developed. Libraries of amino acids were prepared in moderate to good yield with good to high enantioselectivity. This simple method widens the scope for preparation of structurally diverse amino acids.


Subject(s)
Amino Acids/chemical synthesis , Alcohols/chemistry , Alkylation , Amino Acids/chemistry , Coordination Complexes/chemistry , Glycine/chemistry , Nickel/chemistry , Phosphoranes/chemistry , Stereoisomerism
17.
ACS Comb Sci ; 13(5): 449-52, 2011 Sep 12.
Article in English | MEDLINE | ID: mdl-21648463

ABSTRACT

The partnership between rational synthesis design and mass-triggered preparative LCMS is a powerful one, capable of furnishing very large libraries in a selective manner in a very short space of time. Herein, we communicate one example of possibly a perfect marriage between the synthetic chemistry and the subsequent purification method employed, affording a ∼1000-member library supplying 50 mg on average of final compound in less than a month.


Subject(s)
Chemistry Techniques, Synthetic/methods , Pyrazines/chemical synthesis , Small Molecule Libraries/chemical synthesis , Molecular Structure , Pyrazines/chemistry , Small Molecule Libraries/chemistry , Stereoisomerism
18.
Bioorg Med Chem Lett ; 17(23): 6448-54, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17937987

ABSTRACT

A new class of small-molecule GnRH antagonists, the thieno[2,3-b]pyrroles, was designed. Herein, the synthesis and structure-activity relationships are described. Substitution at the C4 position was investigated; during this study, it was observed that introducing piperazines and piperidines improved the physical properties of the compounds while retaining good in vitro potency. This exploration led to the discovery of amidopiperidines with improved pharmacokinetic properties.


Subject(s)
Pyrroles/chemical synthesis , Receptors, LHRH/antagonists & inhibitors , Thiophenes/chemical synthesis , Animals , Humans , Pyrroles/pharmacology , Rats , Receptors, LHRH/metabolism , Receptors, LHRH/physiology , Structure-Activity Relationship , Thiophenes/pharmacology
20.
Bioorg Med Chem Lett ; 16(10): 2672-6, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16516473

ABSTRACT

The structure-activity relationship of a novel subseries of 4-anilinoquinazoline EGFR inhibitors substituted at the C-6 position with carbon-linked side chains has been investigated. This exploration has led to the discovery of novel aminomethyl carboxamides with good biological, pharmacokinetic and physical properties.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Quinazolines/chemistry , Quinazolines/pharmacology , Administration, Oral , Animals , Dogs , Quinazolines/chemical synthesis , Quinazolines/pharmacokinetics , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL