Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 354
Filter
1.
Emerg Infect Dis ; 30(6): 1203-1213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782023

ABSTRACT

Major dengue epidemics throughout Nicaragua's history have been dominated by 1 of 4 dengue virus serotypes (DENV-1-4). To examine serotypes during the dengue epidemic in Nicaragua in 2022, we performed real-time genomic surveillance in-country and documented cocirculation of all 4 serotypes. We observed a shift toward co-dominance of DENV-1 and DENV-4 over previously dominant DENV-2. By analyzing 135 new full-length DENV sequences, we found that introductions underlay the resurgence: DENV-1 clustered with viruses from Ecuador in 2014 rather than those previously seen in Nicaragua; DENV-3, which last circulated locally in 2014, grouped instead with Southeast Asia strains expanding into Florida and Cuba in 2022; and new DENV-4 strains clustered within a South America lineage spreading to Florida in 2022. In contrast, DENV-2 persisted from the formerly dominant Nicaragua clade. We posit that the resurgence emerged from travel after the COVID-19 pandemic and that the resultant intensifying hyperendemicity could affect future dengue immunity and severity.


Subject(s)
COVID-19 , Dengue Virus , Dengue , Phylogeny , SARS-CoV-2 , Serogroup , Dengue Virus/genetics , Dengue Virus/classification , Nicaragua/epidemiology , Humans , Dengue/epidemiology , Dengue/virology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Pandemics
2.
medRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38712100

ABSTRACT

The Advisory Committee on Immunization Practices (ACIP) recommended that dengue pre-vaccination screening tests for Dengvaxia administration have at least 98% specificity and 75% sensitivity. This study evaluates the performance of commercial anti-DENV IgG tests to identify tests that could be used for pre-vaccination screening. First, for 7 tests, we evaluated sensitivity and specificity in early convalescent dengue virus (DENV) infection, using 44 samples collected 7-30 days after symptom onset and confirmed by RT-PCR. Next, for the 5 best performing tests and two additional tests (with and without an external test reader) that became available later, we evaluated performance to detect past dengue infection among a panel of 44 specimens collected in 2018-2019 from healthy 9-16-year-old children from Puerto Rico. Finally, a full-scale evaluation was done with the 4 best performing tests using 400 specimens from the same population. We used virus focus reduction neutralization test and an in-house DENV IgG ELISA as reference standards. Of seven tests, five showed ≥75% sensitivity detecting anti-DENV IgG in early convalescent specimens with low cross-reactivity to Zika virus. For the detection of previous DENV infections the tests with the highest performance were the Euroimmun NS1 IgG ELISA (sensitivity 84.5%, specificity 97.1%) and CTK Dengue IgG rapid test R0065C with the test reader (sensitivity 76.2% specificity 98.1%). There are IgG tests available that can be used to accurately classify individuals with previous DENV infection as eligible for dengue vaccination to support safe vaccine implementation.

3.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562865

ABSTRACT

Aedes mosquitoes, as vectors of medically important arthropod-borne viruses (arboviruses), constitute a major public health threat that requires entomological and epidemiological surveillance to guide vector control programs to prevent and reduce disease transmission. In this study, we present the collaborative effort of one year of mosquito-based arbovirus surveillance in two geographically distinct regions of Latin America (Nicaragua and Ecuador). Adult female mosquitoes were collected using backpack aspirators in over 2,800 randomly selected households (Nicaragua, Ecuador) and 100 key sites (Nicaragua) from eight distinct communities (Nicaragua: 2, Ecuador: 6). A total of 1,358 mosquito female pools were processed for RNA extraction and viral RNA detection using real-time RT-PCR. Ten positive dengue virus (DENV) pools were detected (3 in Nicaragua and 7 in Ecuador), all of which were found during the rainy season and matched the serotypes found in humans (Nicaragua: DENV-1 and DENV-4; Ecuador: DENV-2). Infection rates ranged from 1.13 to 23.13, with the Nicaraguan communities having the lowest infection rates. Our results demonstrate the feasibility of detecting DENV-infected Aedes mosquitoes in low-resource settings and underscore the need for targeted mosquito arbovirus sampling and testing, providing valuable insights for future surveillance programs in the Latin American region.

4.
medRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38633800

ABSTRACT

Background: Dengue is the most prevalent mosquito-borne viral disease and a major public health problem worldwide. Most primary infections with the four dengue virus serotypes (DENV1-4) are inapparent; nevertheless, prior research has primarily focused on symptomatic infections, which has limited our understanding of the epidemiological burden and spectrum of disease of each DENV serotype. Our study addresses this bottleneck in dengue research by providing a new method and a detailed examination of primary inapparent infections. Methods: Here we present (1) the evaluation of a multiplex DENV1-4 envelope domain III multiplex microsphere-based assay (EDIII-MMBA) to serotype inapparent primary infections and (2) its application leveraging 17 years of prospective sample collection from the Nicaraguan Pediatric Dengue Cohort Study. After evaluation, we analyzed 46% (N=574) of total inapparent primary DENV infections with the EDIII-MMBA. Remaining infections were inferred using stochastic imputation, taking year and neighborhood of infection into account. Findings: The EDIII-MMBA demonstrated excellent diagnostic accuracy of symptomatic and inapparent primary DENV infections when evaluated against gold-standard serotyping methods. Significant within- and between-year variation in serotype distribution between symptomatic and inapparent infections and circulation of serotypes undetected in symptomatic cases were observed in multiple years. Our findings reveal that a significant majority of primary infections remained inapparent: 76.8% for DENV1, 79.9% for DENV2, and 63.9% for DENV3. DENV3 exhibited the highest likelihood of symptomatic and severe primary infections (Pooled OR compared to DENV1 = 2.13, 95% CI 1.28-3.56, and 6.75, 2.01-22.62, respectively), whereas DENV2 had similar likelihood to DENV1 in both analyses. Interpretation: Our study indicates that case surveillance skews the perceived epidemiological footprint of DENV and reveals a more complex and intricate pattern of serotype distribution in inapparent infections. Further, the significant differences in infection outcomes by serotype emphasizes the need for serotype-informed public health strategies. Funding: NIH/NIAID P01AI106695, U01AI153416. Research in context: Evidence before this study: We conducted a search in PubMed for studies published up to February 2024. Keywords included "dengue virus" and "DENV" in combination with "inapparent infections", "asymptomatic infections", "primary infections by serotype", "FoI by serotype", "force of infection", "force of infection by serotype", and identified a significant gap in the current understanding of dengue epidemiology. Despite acknowledging the high prevalence of inapparent DENV infections in endemic regions, previous research has focused primarily on symptomatic infections, potentially biasing our understanding of the DENV epidemiological landscape and hindering our capacity to determine the complete disease spectrum of the different DENV serotypes. While cross-sectional studies have provided preliminary insights into this gap, there is a need for more comprehensive and detailed serotype-specific insights to evaluate the epidemiological impact of inapparent infections. The lack of comprehensive characterization of inapparent infections reflects methodological challenges, particularly the need for prospective cohort studies designed to capture and accurately serotype these infections. Moreover, the reliance on labor-intensive and low-throughput antibody neutralization assays for serotyping, despite their accuracy, has constrained high-throughput analysis required for large-scale epidemiological studies.Added value of this study: Our study, spanning 17 years of prospective cohort data in Nicaragua, addresses this bottleneck in dengue research by providing a detailed examination of primary inapparent infections. The introduction of a novel envelope domain III (EDIII) multiplex microsphere-based assay for DENV serotyping represents a significant methodological advance, offering an efficient, scalable alternative for large epidemiological studies. A key contribution of our study is the intricate pattern of serotype distribution among inapparent infections. In contrast to the serotype predominance observed in symptomatic infections, inapparent infections exhibit a complex landscape with co-circulation of multiple DENV serotypes, including serotypes undetected in symptomatic surveillance in multiple years. Our systematic documentation of the entire disease spectrum provides unprecedented insights into the serotype-specific disease burden in primary infection, including the proportion of symptomatic versus inapparent infection and its temporal variations, thus providing a more complete picture of DENV epidemiology than has been available to date. Notably, we demonstrate striking differences in disease severity by serotype, with DENV3 infections being significantly more symptomatic and more severe compared to DENV1 and DENV2, the latter displaying the highest rate of inapparent infection.Implications of all the available evidence: Our research challenges prior assumptions by demonstrating that inapparent and symptomatic primary DENV infections present distinct epidemiological profiles, revealing that the epidemiological footprint of DENV is broader and more nuanced than previously recognized through symptomatic cases alone. These findings underscore the utility for continuous and comprehensive surveillance systems that capture both symptomatic and inapparent infections to accurately assess the epidemiological burden of DENV and inform public health interventions. Additionally, they provide critical insight for enhancing the accuracy of predictive DENV transmission modeling. Furthermore, the marked differences in infection outcomes by serotype emphasize the need for serotype-informed public health strategies. This nuanced understanding is pivotal for the crafting of targeted interventions, vaccine development and vaccination strategies, and efficient resource allocation, ultimately contributing to the global effort to mitigate the impact of dengue.

5.
medRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38633790

ABSTRACT

Background: Obesity is on the rise globally in adults and children, including in tropical areas where diseases such as dengue have a substantial burden, particularly in children. Obesity impacts the risk of severe dengue disease; however, the impact on dengue virus (DENV) infection and dengue cases remains an open question. Methods: We used 9 years of data from 5,940 children in the Pediatric Dengue Cohort Study in Nicaragua to examine whether pediatric obesity is associated with increased susceptibility to DENV infection and symptomatic presentation. Analysis was performed using Generalized Estimating Equations adjusted for age, sex, and pre-infection DENV antibody titers. Results: From 2011 to 2019, children contributed 26,273 person-years of observation, and we observed an increase in the prevalence of overweight (from 12% to 17%) and obesity (from 7% to 13%). There were 1,682 DENV infections and 476 dengue cases in the study population. Compared to participants with normal weight, participants with obesity had higher odds of DENV infection (Adjusted Odds Ratio [aOR] 1.21, 95% confidence interval [CI] 1.03-1.42) and higher odds of dengue disease given infection (aOR 1.59, 95% CI 1.15-2.19). Children with obesity infected with DENV showed increased odds of presenting fever (aOR 1.46, 95% CI 1.05-2.02), headache (aOR 1.51, 95% CI 1.07-2.14), and rash (aOR 2.26, 95% CI 1.49-3.44) when compared with children with normal weight. Conclusions: Our results indicate that obesity is associated with increased susceptibility to DENV infection and dengue cases in children, independently of age, sex, and pre-infection DENV antibody titers.

6.
PLoS Pathog ; 20(4): e1012167, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662771

ABSTRACT

Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1ß in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1ß. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.


Subject(s)
Dengue Virus , Dengue , Inflammasomes , Macrophages , Viral Nonstructural Proteins , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/immunology , Animals , Inflammasomes/metabolism , Inflammasomes/immunology , Dengue/immunology , Dengue/virology , Dengue/metabolism , Mice , Dengue Virus/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Mice, Inbred C57BL , Mice, Knockout , Caspase 1/metabolism
7.
medRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405964

ABSTRACT

Background: Dengue virus, a major global health threat, consists of four serotypes (DENV1-4) that cause a range of clinical manifestations from mild to severe and potentially fatal disease. Methods: This study, based on 19 years of data from the Pediatric Dengue Cohort Study and Pediatric Dengue Hospital-based Study in Managua, Nicaragua, investigates the influence of serotype and immune status on dengue severity. Study participants 6 months to 17 years old were followed during their hospital stay or as ambulatory patients, with dengue cases confirmed by molecular, serological, and/or virological methods. Results: We enrolled a total of 14071 participants, of whom 2954 (21%) were positive for DENV infection. Of 2425 cases with serotype result by RT-PCR, 541 corresponded to DENV1, 996 to DENV2, 718 to DENV3 and 170 to DENV4. Severe disease was more prevalent among secondary DENV2 and DENV4 cases, while similar disease severity was observed in both primary and secondary DENV1 and DENV3 cases. According to the 1997 World Health Organization (WHO) severity classification, both DENV2 and DENV3 had a higher proportion of severe disease compared to other serotypes, whereas DENV3 had the greatest percentage of severity under the WHO-2009 classification. DENV2 was associated with pleural effusion and low platelet count, while DENV3 correlated with both hypotensive and compensated shock. Conclusions: These findings emphasize the critical need for a dengue vaccine with balanced efficacy against all four serotypes, particularly as existing vaccines show variable efficacy by serotype and immune status, posing challenges for comprehensive protection, particularly in dengue-naïve individuals.

8.
medRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370822

ABSTRACT

Dengue is widespread in tropical and subtropical regions globally and leads to a considerable burden of disease. Annually, dengue virus (DENV) causes up to 400 million infections, of which ~25% present with clinical symptoms ranging from mild to fatal. Despite its significance as a growing public health concern, the development of effective DENV vaccines has been highly challenging. One of the reasons is the lack of comprehensive understanding of the influence exerted by prior DENV infections and immune responses with cross-reactive properties. To investigate this, we collected samples from a pediatric cohort study in dengue-endemic Managua, Nicaragua. We characterized T cell responses in a group of 71 healthy children who had previously experienced one or more natural DENV infections and who, within one year after sample collection, had a subsequent DENV infection that was either symptomatic (n=25) or inapparent (n=46, absence of clinical disease). Thus, our study was designed to investigate the impact of pre-existing DENV specific T cell responses on the clinical outcomes of subsequent DENV infection. We assessed the DENV specific T cell responses using an activation-induced marker assay (AIM). Children who had experienced only one prior DENV infection displayed heterogeneous DENV specific CD4+ and CD8+ T cell frequencies. In contrast, children who had experienced two or more DENV infections showed significantly higher frequencies of DENV specific CD4+ and CD8+ T cells that were associated with inapparent as opposed to symptomatic outcomes in the subsequent DENV infection. Taken together, these findings demonstrate the protective role of DENV specific T cells against symptomatic DENV infection and constitute an advancement toward identifying protective immune correlates against dengue fever and clinical disease.

9.
PLoS Negl Trop Dis ; 18(2): e0011948, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38416797

ABSTRACT

Chikungunya can result in debilitating arthralgia, often presenting as acute, self-limited pain, but occasionally manifesting chronically. Little is known about differences in chikungunya-associated arthralgia comparing children to adults over time. To characterize long-term chikungunya-associated arthralgia, we recruited 770 patients (105 0-4 years old [y/o], 200 5-9 y/o, 307 10-15 y/o, and 158 16+ y/o) with symptomatic chikungunya virus infections in Managua, Nicaragua, during two consecutive chikungunya epidemics (2014-2015). Participants were assessed at ~15 days and 1, 3, 6, 12, and 18 months post-fever onset. Following clinical guidelines, we defined participants by their last reported instance of arthralgia as acute (≤10 days post-fever onset), interim (>10 and <90 days), or chronic (≥90 days) cases. We observed a high prevalence of arthralgia (80-95%) across all ages over the study period. Overall, the odds of acute arthralgia increased in an age-dependent manner, with the lowest odds of arthralgia in the 0-4 y/o group (odds ratio [OR]: 0.27, 95% confidence interval [CI]: 0.14-0.51) and the highest odds of arthralgia in the 16+ y/o participants (OR: 4.91, 95% CI: 1.42-30.95) relative to 10-15 y/o participants. Females had higher odds of acute arthralgia than males (OR: 1.63, 95% CI: 1.01-2.65) across all ages. We found that 23-36% of pediatric and 53% of adult participants reported an instance of post-acute arthralgia. Children exhibited the highest prevalence of post-acute polyarthralgia in their legs, followed by the hands and torso - a pattern not seen among adult participants. Further, we observed pediatric chikungunya presenting in two distinct phases: the acute phase and the subsequent interim/chronic phases. Thus, differences in the presentation of arthralgia were observed across age, sex, and disease phase in this longitudinal chikungunya cohort. Our results elucidate the long-term burden of chikungunya-associated arthralgia among pediatric and adult populations.


Subject(s)
Chikungunya Fever , Chikungunya virus , Adult , Male , Female , Humans , Child , Chikungunya Fever/complications , Chikungunya Fever/epidemiology , Prospective Studies , Nicaragua/epidemiology , Arthralgia/etiology , Arthralgia/complications , Fever/complications
10.
Nat Commun ; 15(1): 382, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195666

ABSTRACT

Dengue viruses (DENV1-4) are the most prevalent arboviruses in humans and a major public health concern. Understanding immune mechanisms that modulate DENV infection outcome is critical for vaccine development. Neutralizing antibodies (nAbs) are an essential component of the protective immune response, yet their measurement often relies on a single cellular substrate and partially mature virions, which does not capture the full breadth of neutralizing activity and may lead to biased estimations of nAb potency. Here, we analyze 125 samples collected after one or more DENV infections but prior to subsequent symptomatic or inapparent DENV1, DENV2, or DENV3 infections from a long-standing pediatric cohort study in Nicaragua. By assessing nAb responses using Vero cells with or without DC-SIGN and with mature or partially mature virions, we find that nAb potency and the protective NT50 cutoff are greatly influenced by cell substrate and virion maturation state. Additionally, the correlation between nAb titer and protection from disease depends on prior infection history and infecting serotype. Finally, we uncover variations in nAb composition that contribute to protection from symptomatic infection differently after primary and secondary prior infection. These findings have important implications for identifying antibody correlates of protection for vaccines and natural infections.


Subject(s)
Coinfection , Dengue , Chlorocebus aethiops , Animals , Humans , Child , Antibodies, Neutralizing , Cohort Studies , Serogroup , Vero Cells , Dengue/prevention & control
11.
Inflammation ; 47(1): 346-362, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37831367

ABSTRACT

Infectious diseases are a significant burden in global healthcare. Pathogens engage with different host defense mechanisms. However, it is currently unknown if there are disease-specific immune signatures and/or if different pathogens elicit common immune-associated molecular entities to common therapeutic interventions. We studied patients enrolled through the Human Immunology Project Consortium (HIPC), which focuses on immune responses to various infections. Blood samples were collected and analyzed from patients during infection and follow-up time points at the convalescent stage. The study included samples from patients with Lyme disease (LD), tuberculosis (TB), malaria (MLA), dengue virus (DENV), and West Nile virus (WNV), as well as kidney transplant patients with cytomegalovirus (CMV) and polyomavirus (BKV) infections. Using an antibody-based assay, we quantified ~ 350 cell surface markers, cytokines, and chemokines involved in inflammation and immunity. Unique protein signatures were identified specific to the acute phase of infection irrespective of the pathogen type, with significant changes during convalescence. In addition, tumor necrosis factor receptor superfamily member 6 (TNR6), C-C Motif Chemokine Receptor 7 (CCR7), and C-C motif chemokine ligand-1 (CCL1) were increased in the acute and convalescent phases across all viral, bacterial, and protozoan compared to blood from healthy donors. Furthermore, despite the differences between pathogens, proteins were enriched in common biological pathways such as cell surface receptor signaling pathway and response to external stimulus. In conclusion, we demonstrated that irrespective of the pathogen type, there are common immunoregulatory and proinflammatory signals.


Subject(s)
Proteome , West Nile virus , Humans , Inflammation , Cytokines , Signal Transduction/physiology
12.
medRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38077039

ABSTRACT

Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on pre-existing antibodies and the subsequent infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) has been shown to increase DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by all four serotypes in a pediatric Nicaraguan cohort. Of 3,412 participants in 2022, 10.6% experienced symptomatic DENV infections caused by DENV1 (n=139), DENV4 (n=133), DENV3 (n=54), DENV2 (n=9), or an undetermined serotype (n=39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since the last infection, cohort year, and repeat measurements were used to predict disease risk. Compared to flavivirus-naïve participants, primary ZIKV infection increased disease risk of DENV4 (relative risk = 2.62, 95% confidence interval: 1.48-4.63) and DENV3 (2.90, 1.34-6.27) but not DENV1 (1.20, 0.72-1.99). Primary DENV infection or a DENV followed by ZIKV infection also increased DENV4 risk. We re-analyzed 19 years of cohort data and demonstrated that prior flavivirus-immunity and pre-existing antibody titer differentially affected disease risk for incoming serotypes, increasing risk of DENV2 and DENV4, protecting against DENV1, and protecting at high titers but enhancing at low titers against DENV3. We thus find that prior ZIKV infection, like prior DENV infection, increases risk of certain DENV serotypes. Cross-reactivity among flaviviruses should be carefully considered when assessing vaccine safety and efficacy.

13.
Sci Transl Med ; 15(722): eadi1734, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37967199

ABSTRACT

Sequential infection with multiple dengue virus (DENV) serotypes is thought to induce enduring protection against dengue disease. However, long-term antibody waning has been observed after repeated DENV infection. Here, we provide evidence that highly immune Nicaraguan children and adults (n = 4478) experience boosting and waning of antibodies during and after major Zika and dengue epidemics. We develop a susceptible-infected-recovered-susceptible (SIRS-type) model that tracks immunity by titer rather than number of infections to show that boosts in highly immune individuals can contribute to herd immunity, delaying their susceptibility to transmissible infection. In contrast, our model of lifelong immunity in highly immune individuals, as previously assumed, results in complete disease eradication after introduction. Periodic epidemics under this scenario can only be sustained with a constant influx of infected individuals into the population or a high basic reproductive number. We also find that Zika virus infection can boost DENV immunity and produce delays and then surges in dengue epidemics, as observed with real epidemiological data. This work provides insight into factors shaping periodicity in dengue incidence and may inform vaccine efforts to maintain population immunity.


Subject(s)
Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Adult , Child , Humans , Dengue/epidemiology , Antibodies, Viral , Cross Reactions
14.
Cell Host Microbe ; 31(11): 1850-1865.e5, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37909048

ABSTRACT

The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Humans , Antibodies, Viral , Antibodies, Neutralizing , Viral Envelope Proteins/genetics , Glycoproteins , Vaccination
15.
J Infect Dis ; 228(Suppl 6): S398-S413, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37849402

ABSTRACT

Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.


Subject(s)
Flavivirus Infections , Flavivirus , Vaccines , Zika Virus Infection , Zika Virus , Animals , Humans , Flavivirus Infections/prevention & control , Mosquito Vectors , Zika Virus Infection/prevention & control
16.
bioRxiv ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37790301

ABSTRACT

Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1ß in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1ß. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.

17.
BMC Ecol Evol ; 23(1): 58, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770825

ABSTRACT

BACKGROUND: Dengue is a mosquito-borne viral disease posing a significant threat to public health. Dengue virus (DENV) evolution is often characterized by lineage turnover, which, along with ecological and immunological factors, has been linked to changes in dengue phenotype affecting epidemic dynamics. Utilizing epidemiologic and virologic data from long-term population-based studies (the Nicaraguan Pediatric Dengue Cohort Study and Nicaraguan Dengue Hospital-based Study), we describe a lineage turnover of DENV serotype 2 (DENV-2) prior to a large dengue epidemic in 2019. Prior to this epidemic, Nicaragua had experienced relatively low levels of DENV transmission from 2014 to 2019, a period dominated by chikungunya in 2014/15 and Zika in 2016. RESULTS: Our phylogenetic analyses confirmed that all Nicaraguan DENV-2 isolates from 2018 to 2019 formed their own clade within the Nicaraguan lineage of the Asian/American genotype. The emergence of the new DENV-2 lineage reflects a replacement of the formerly dominant clade presiding from 2005 to 2009, a lineage turnover marked by several shared derived amino acid substitutions throughout the genome. To elucidate evolutionary drivers of lineage turnover, we performed selection pressure analysis and reconstructed the demographic history of DENV-2. We found evidence of adaptive evolution by natural selection at the codon level as well as in branch formation. CONCLUSIONS: The timing of its emergence, along with a statistical signal of adaptive evolution and distinctive amino acid substitutions, the latest in the NS5 gene, suggest that this lineage may have increased fitness relative to the prior dominant DENV-2 strains. This may have contributed to the intensity of the 2019 DENV-2 epidemic, in addition to previously identified immunological factors associated with pre-existing Zika virus immunity.


Subject(s)
Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Child , Animals , Dengue Virus/genetics , Dengue/epidemiology , Nicaragua/epidemiology , Phylogeny , Cohort Studies
18.
medRxiv ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37502957

ABSTRACT

The four dengue virus serotypes (DENV1-4) are the most prevalent arboviruses in humans and a major public health concern worldwide. Understanding immune mechanisms that modulate DENV infection outcome is critical for epidemic preparedness and development of a safe and effective vaccine. Neutralizing antibodies (nAbs) are an essential component of the protective response, yet their measurement often relies on a single cellular substrate and partially mature virions, which do not capture the full breadth of neutralizing activity and may lead to biased estimations of nAb potency. Here, we investigated the characteristics of nAbs associated with protection against dengue cases using samples collected after one or more DENV infections but prior to subsequent symptomatic or inapparent DENV1, DENV2, or DENV3 infections from a long- standing pediatric cohort study in Nicaragua. By assessing nAb responses using Vero cells with or without the attachment factor DC-SIGN and with mature or partially mature virions, we found that nAb potency and the protective NT 50 cutoff were greatly influenced by cell substrate and virion maturation state. Additionally, the correlation between nAb titer and protection from disease depended on an individual's prior infection history and the subsequent infecting DENV serotype. Finally, we uncovered variations in nAbs composition that contributed to protection from symptomatic DENV infection differently after primary and secondary prior infection. These findings have important implications for identifying antibody correlates of protection in the context of vaccines and natural infections.

19.
medRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425955

ABSTRACT

Yellow fever virus (YFV) infections can cause severe disease manifestations, including hepatic injury, endothelial damage, coagulopathy, hemorrhage, systemic organ failure, and shock, and are associated with high mortality in humans. While nonstructural protein 1 (NS1) of the related dengue virus is implicated in contributing to vascular leak, little is known about the role of YFV NS1 in severe YF and mechanisms of vascular dysfunction in YFV infections. Here, using serum samples from qRT-PCR-confirmed YF patients with severe (n=39) or non-severe (n=18) disease in a well-defined hospital cohort in Brazil, plus samples from healthy uninfected controls (n=11), we investigated factors associated with disease severity. We developed a quantitative YFV NS1 capture ELISA and found significantly increased levels of NS1, as well as syndecan-1, a marker of vascular leak, in serum from severe YF as compared to non-severe YF or control groups. We also showed that hyperpermeability of endothelial cell monolayers treated with serum from severe YF patients was significantly higher compared to non-severe YF and control groups as measured by transendothelial electrical resistance (TEER). Further, we demonstrated that YFV NS1 induces shedding of syndecan-1 from the surface of human endothelial cells. Notably, YFV NS1 serum levels significantly correlated with syndecan-1 serum levels and TEER values. Syndecan-1 levels also significantly correlated with clinical laboratory parameters of disease severity, viral load, hospitalization, and death. In summary, this study points to a role for secreted NS1 in YF disease severity and provides evidence for endothelial dysfunction as a mechanism of YF pathogenesis in humans.

20.
medRxiv ; 2023 May 17.
Article in English | MEDLINE | ID: mdl-37214808

ABSTRACT

Chikungunya can result in debilitating arthralgia, often presenting as acute, self-limited pain, but occasionally manifesting chronically. Little is known about differences in chikungunya-associated arthralgia comparing children to adults over time. To characterize long-term chikungunya-associated arthralgia, we recruited 770 patients (105 0-4 year olds [y/o], 200 5-9 y/o, 307 10-15 y/o, and 158 16+ y/o) with symptomatic chikungunya virus infections in Managua, Nicaragua, during two chikungunya epidemics (2014-2015). Participants were assessed at ~15 days and 1, 3, 6, 12, and 18 months post-fever onset. Following clinical guidelines, we defined participants by their last reported instance of arthralgia as acute (≤10 days post-fever onset), interim (>10 and <90 days), or chronic (≥90 days) cases. We observed a high prevalence of arthralgia (80-95%) across all ages over the study period. Overall, the odds of acute arthralgia increased in an age-dependent manner, with the lowest odds of arthralgia in the 0-4 y/o group (odds ratio [OR]: 0.27, 95% confidence interval [CI]: 0.14-0.51) and the highest odds of arthralgia in the 16+ y/o participants (OR: 4.91, 95% CI: 1.42-30.95) relative to 10-15 y/o participants. Females had a higher odds of acute arthralgia than males (OR: 1.63, 95% CI: 1.01-2.65) across all ages. We found that 23-36% of pediatric and 53% of adult participants reported an instance of post-acute arthralgia. Children exhibited the highest prevalence of post-acute polyarthralgia in their legs, followed by the hands and torso - a pattern not seen among adult participants. Further, we observed pediatric chikungunya presenting in two distinct phases: the acute phase and the associated interim and chronic phases. Differences in the presentation of arthralgia were observed across age, sex, and disease phase in this longitudinal chikungunya cohort. Our results elucidate the long-term burden of chikungunya-associated arthralgia among pediatric and adult populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...