Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Dis Aquat Organ ; 153: 9-16, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36727687

ABSTRACT

Eastern hellbenders Cryptobranchus alleganiensis alleganiensis, large aquatic salamanders, are declining over most of their range. The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has contributed to global amphibian declines and has been detected on eastern hellbenders, but infection intensities were lower than those of species that are more susceptible to Bd. The factors limiting Bd on hellbenders may include antifungal metabolites produced by their skin microbiota. We used a metabolite fingerprinting technique to noninvasively identify the presence, but not identity, of metabolites associated with eastern hellbenders. We surveyed the skin of wild eastern hellbenders to test whether the composition and richness (i.e. number of metabolites) of their metabolites are explained by Bd status or location. Furthermore, we surveyed for metabolites on captive eastern hellbenders to test whether metabolite compositions were different between captive and wild eastern hellbenders. Bd detection was not associated with either metabolite richness or composition. Both metabolite composition and richness differed significantly on hellbenders from different locations (i.e. states). For metabolite composition, there was a statistical interaction between location and Bd status. Metabolite richness was greater on captive eastern hellbenders compared to wild hellbenders, and metabolite compositions differed between wild and captive eastern hellbenders. The methods we employed to detect metabolite profiles effectively grouped individuals by location even though metabolite composition and richness have high levels of intraspecific variation. Understanding the drivers and functional consequences of assemblages of skin metabolites on amphibian health will be an important step toward understanding the mechanisms that result in disease vulnerability.


Subject(s)
Chytridiomycota , Urodela , Animals , Urodela/microbiology , Amphibians , Batrachochytrium , Skin/microbiology
2.
FEMS Microbiol Ecol ; 98(3)2022 03 24.
Article in English | MEDLINE | ID: mdl-35212765

ABSTRACT

Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus,andCraugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.


Subject(s)
Chytridiomycota , Microbiota , Amphibians/microbiology , Animals , Bacteria/genetics , Disease Resistance , Skin/microbiology
3.
Microb Ecol ; 79(1): 192-202, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31093727

ABSTRACT

Probiotics can ameliorate diseases of humans and wildlife, but the mechanisms remain unclear. Host responses to interventions that change their microbiota are largely uncharacterized. We applied a consortium of four natural antifungal bacteria to the skin of endangered Sierra Nevada yellow-legged frogs, Rana sierrae, before experimental exposure to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). The probiotic microbes did not persist, nor did they protect hosts, and skin peptide sampling indicated immune modulation. We characterized a novel skin defense peptide brevinin-1Ma (FLPILAGLAANLVPKLICSITKKC) that was downregulated by the probiotic treatment. Brevinin-1Ma was tested against a range of amphibian skin cultures and found to inhibit growth of fungal pathogens Bd and B. salamandrivorans, but enhanced the growth of probiotic bacteria including Janthinobacterium lividum, Chryseobacterium ureilyticum, Serratia grimesii, and Pseudomonas sp. While commonly thought of as antimicrobial peptides, here brevinin-1Ma showed promicrobial function, facilitating microbial growth. Thus, skin exposure to probiotic bacterial cultures induced a shift in skin defense peptide profiles that appeared to act as an immune response functioning to regulate the microbiome. In addition to direct microbial antagonism, probiotic-host interactions may be a critical mechanism affecting disease resistance.


Subject(s)
Antifungal Agents/pharmacology , Peptides/pharmacology , Probiotics/pharmacology , Ranidae/microbiology , Skin/metabolism , Amino Acid Sequence , Animals , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Chytridiomycota/drug effects , Chytridiomycota/growth & development , Microbiota/drug effects , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Ranidae/metabolism , Skin/microbiology
4.
R Soc Open Sci ; 6(9): 191080, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31598324

ABSTRACT

Individual differences in host phenotypes can generate heterogeneity in the acquisition and transmission of microbes. Although this has become a prominent factor of disease epidemiology, host phenotypic variation might similarly underlie the transmission of microbial symbionts that defend against pathogen infection. Here, we test whether host body size and behaviour influence the social acquisition of a skin bacterium, Janthinobacterium lividum, which in some hosts can confer protection against infection by Batrachochytrium dendrobatidis, the causative agent of the amphibian skin disease chytridiomycosis. We measured body size and boldness (time spent in an open field) of green frog tadpoles and haphazardly constructed groups of six individuals. In some groups, we exposed one individual in each group to J. lividum and, in other groups, we inoculated a patch of aquarium pebbles to J. lividum. After 24 h, we swabbed each individual to estimate the presence of J. lividum on their skin. On average, tadpoles acquired nearly four times more bacteria when housed with an exposed individual compared to those housed with a patch of inoculated substrate. When tadpoles were housed with an exposed group-mate, larger and 'bolder' individuals acquired more bacteria. These data suggest that phenotypically biased acquisition of defensive symbionts might generate biased patterns of mortality from the pathogens against which they protect.

5.
PeerJ ; 7: e7044, 2019.
Article in English | MEDLINE | ID: mdl-31275740

ABSTRACT

The amphibian skin microbiome has been the focus of recent studies aiming to better understand the role of these microbial symbionts in host defense against disease. However, host-associated microbial communities are complex and dynamic, and changes in their composition and structure can influence their function. Understanding temporal variation of bacterial communities on amphibian skin is critical for establishing baselines from which to improve the development of mitigation techniques based on probiotic therapy and provides long-term host protection in a changing environment. Here, we investigated whether microbial communities on amphibian skin change over time at a single site. To examine this, we collected skin swabs from two pond-breeding species of treefrogs, Agalychnis callidryas and Dendropsophus ebraccatus, over 4 years at a single lowland tropical pond in Panamá. Relative abundance of operational taxonomic units (OTUs) based on 16S rRNA gene amplicon sequencing was used to determine bacterial community diversity on the skin of both treefrog species. We found significant variation in bacterial community structure across long and short-term time scales. Skin bacterial communities differed across years on both species and between seasons and sampling days only in D. ebraccatus. Importantly, bacterial community structures across days were as variable as year level comparisons. The differences in bacterial community were driven primarily by differences in relative abundance of key OTUs and explained by rainfall at the time of sampling. These findings suggest that skin-associated microbiomes are highly variable across time, and that for tropical lowland sites, rainfall is a good predictor of variability. However, more research is necessary to elucidate the significance of temporal variation in bacterial skin communities and their maintenance for amphibian conservation efforts.

6.
7.
ISME J ; 13(7): 1763-1775, 2019 07.
Article in English | MEDLINE | ID: mdl-30867545

ABSTRACT

Chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis (Bd), has led to population declines and extinctions of frog species around the world. While it is known that symbiotic skin bacteria can play a protective role against pathogens, it is not known how these defensive bacteria are integrated into the bacterial community on amphibian skin. In this study, we used 16S rRNA gene amplicon sequencing, culturing and Bd inhibition bioassays to characterize the communities of skin bacteria on three Neotropical frog species that persist in a Bd-infected area in Panama and determined the abundance and integration of anti-Bd bacteria into the community. We found that the two treefrog species had a similar bacterial community structure, which differed from the more diverse community found on the terrestrial frog. Co-occurrence networks also revealed differences between frog species such that the treefrogs had a significantly higher number of culturable Bd-inhibitory OTUs with high centrality scores compared with the terrestrial frog. We found that culture-dependent OTUs captured between 21 and 39% of the total relative abundance revealed in culture-independent communities. Our results suggest different ecological strategies occurring within skin antifungal communities on host species that have not succumbed to Bd infections in the wild.


Subject(s)
Antifungal Agents/pharmacology , Anura/microbiology , Bacteria/isolation & purification , Chytridiomycota/physiology , Host Specificity , Microbiota , Mycoses/veterinary , Animals , Bacteria/chemistry , Bacteria/genetics , Chytridiomycota/drug effects , Mycoses/microbiology , Mycoses/prevention & control , RNA, Ribosomal, 16S/genetics , Skin/microbiology , Symbiosis
8.
Nat Ecol Evol ; 3(3): 381-389, 2019 03.
Article in English | MEDLINE | ID: mdl-30778181

ABSTRACT

Animal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacterial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeographic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical approaches. Global amphibian skin bacterial richness was consistently correlated with temperature-associated factors. We found more diverse skin microbiomes in environments with colder winters and less stable thermal conditions compared with environments with warm winters and less annual temperature variation. We used bioinformatically predicted bacterial growth rates, dormancy genes and antibiotic synthesis genes, as well as inferred bacterial thermal growth optima to propose mechanistic hypotheses that may explain the observed patterns. We conclude that temporal and spatial characteristics of the host's macro-environment mediate microbial diversity.


Subject(s)
Anura/microbiology , Climate , Microbiota , Urodela/microbiology , Animals , Bacteria/classification , Bacterial Physiological Phenomena , Skin/microbiology
10.
Front Microbiol ; 9: 466, 2018.
Article in English | MEDLINE | ID: mdl-29615997

ABSTRACT

Skin symbiotic bacteria on amphibians can play a role in protecting their host against pathogens. Chytridiomycosis, the disease caused by Batrachochytrium dendrobatidis, Bd, has caused dramatic population declines and extinctions of amphibians worldwide. Anti-Bd bacteria from amphibian skin have been cultured, and skin bacterial communities have been described through 16S rRNA gene amplicon sequencing. Here, we present a shotgun metagenomic analysis of skin bacterial communities from a Neotropical frog, Craugastor fitzingeri. We sequenced the metagenome of six frogs from two different sites in Panamá: three frogs from Soberanía (Sob), a Bd-endemic site, and three frogs from Serranía del Sapo (Sapo), a Bd-naïve site. We described the taxonomic composition of skin microbiomes and found that Pseudomonas was a major component of these communities. We also identified that Sob communities were enriched in Actinobacteria while Sapo communities were enriched in Gammaproteobacteria. We described gene abundances within the main functional classes and found genes enriched either in Sapo or Sob. We then focused our study on five functional classes of genes: biosynthesis of secondary metabolites, metabolism of terpenoids and polyketides, membrane transport, cellular communication and antimicrobial drug resistance. These gene classes are potentially involved in bacterial communication, bacterial-host and bacterial-pathogen interactions among other functions. We found that C. fitzingeri metagenomes have a wide array of genes that code for secondary metabolites, including antibiotics and bacterial toxins, which may be involved in bacterial communication, but could also have a defensive role against pathogens. Several genes involved in bacterial communication and bacterial-host interactions, such as biofilm formation and bacterial secretion systems were found. We identified specific genes and pathways enriched at the different sites and determined that gene co-occurrence networks differed between sites. Our results suggest that skin microbiomes are composed of distinct bacterial taxa with a wide range of metabolic capabilities involved in bacterial defense and communication. Differences in taxonomic composition and pathway enrichments suggest that skin microbiomes from different sites have unique functional properties. This study strongly supports the need for shotgun metagenomic analyses to describe the functional capacities of skin microbiomes and to tease apart their role in host defense against pathogens.

11.
Ann N Y Acad Sci ; 1429(1): 18-30, 2018 10.
Article in English | MEDLINE | ID: mdl-29479716

ABSTRACT

The use of beneficial microbes to improve host attributes, referred to as probiotic therapy, has been increasingly applied to industries, including aquaculture, agriculture, and human medicine, and is emerging in the field of wildlife medicine. However, there is a general lack of shared knowledge regarding successful practices as well as ecological processes that underlie host-microbe interactions. Presently, probiotics are being developed specifically for preventing and treating particular infectious diseases as an alternative to antibiotic treatments and chemotherapy. We review research on probiotics developed for mitigation of infectious disease in the aforementioned industries to gain insight into how probiotics may be effective in reducing wildlife disease risk. We examine the trends of successful in vivo probiotic applications for disease systems and identify common objectives to reduce intestinal pathogens and sexually transmitted and respiratory diseases, inhibit skin pathogens, and serve as environmental prophylaxis to reduce pathogen loads in the environment. We conclude by highlighting the frontier of wildlife probiotics research and identifying knowledge gaps where research is needed.


Subject(s)
Animals, Wild , Communicable Disease Control/methods , Communicable Diseases/veterinary , Probiotics , Animals , Communicable Diseases/transmission , Host-Pathogen Interactions
12.
Front Microbiol ; 8: 1751, 2017.
Article in English | MEDLINE | ID: mdl-28959244

ABSTRACT

For decades, Amphibians have been globally threatened by the still expanding infectious disease, chytridiomycosis. Madagascar is an amphibian biodiversity hotspot where Batrachochytrium dendrobatidis (Bd) has only recently been detected. While no Bd-associated population declines have been reported, the risk of declines is high when invasive virulent lineages become involved. Cutaneous bacteria contribute to host innate immunity by providing defense against pathogens for numerous animals, including amphibians. Little is known, however, about the cutaneous bacterial residents of Malagasy amphibians and the functional capacity they have against Bd. We cultured 3179 skin bacterial isolates from over 90 frog species across Madagascar, identified them via Sanger sequencing of approximately 700 bp of the 16S rRNA gene, and characterized their functional capacity against Bd. A subset of isolates was also tested against multiple Bd genotypes. In addition, we applied the concept of herd immunity to estimate Bd-associated risk for amphibian communities across Madagascar based on bacterial antifungal activity. We found that multiple bacterial isolates (39% of all isolates) cultured from the skin of Malagasy frogs were able to inhibit Bd. Mean inhibition was weakly correlated with bacterial phylogeny, and certain taxonomic groups appear to have a high proportion of inhibitory isolates, such as the Enterobacteriaceae, Pseudomonadaceae, and Xanthamonadaceae (84, 80, and 75% respectively). Functional capacity of bacteria against Bd varied among Bd genotypes; however, there were some bacteria that showed broad spectrum inhibition against all tested Bd genotypes, suggesting that these bacteria would be good candidates for probiotic therapies. We estimated Bd-associated risk for sampled amphibian communities based on the concept of herd immunity. Multiple amphibian communities, including those in the amphibian diversity hotspots, Andasibe and Ranomafana, were estimated to be below the 80% herd immunity threshold, suggesting they may be at higher risk to chytridiomycosis if a lethal Bd genotype emerges in Madagascar. While this predictive approach rests on multiple assumptions, and incorporates only one component of hosts' defense against Bd, their culturable cutaneous bacterial defense, it can serve as a foundation for continued research on Bd-associated risk for the endemic frogs of Madagascar.

13.
Front Microbiol ; 8: 1530, 2017.
Article in English | MEDLINE | ID: mdl-28861051

ABSTRACT

Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae) was enriched on terrestrial frogs. The presence of shared bacterial OTUs across geographic regions for selected host genera suggests the presence of core microbial communities which in Madagascar, might be driven more strongly by a species' preference for specific microhabitats than by the physical, physiological or biochemical properties of their skin. These results corroborate that both host and environmental factors are driving community assembly of amphibian cutaneous microbial communities, and provide an improved foundation for elucidating their role in disease resistance.

14.
Dis Aquat Organ ; 123(3): 213-226, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28322208

ABSTRACT

The ribosomal gene complex is a multi-copy region that is widely used for phylogenetic analyses of organisms from all 3 domains of life. In fungi, the copy number of the internal transcribed spacer (ITS) is used to detect abundance of pathogens causing diseases such as chytridiomycosis in amphibians and white nose syndrome in bats. Chytridiomycosis is caused by the fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), and is responsible for declines and extinctions of amphibians worldwide. Over a decade ago, a qPCR assay was developed to determine Bd prevalence and pathogen load. Here, we demonstrate the effect that ITS copy number variation in Bd strains can have on the estimation of prevalence and pathogen load. We used data sets from different amphibian species to simulate how ITS copy number affects prevalence and pathogen load. In addition, we tested 2 methods (gBlocks® synthetic standards and digital PCR) to determine ITS copy number in Bd strains. Our results show that assumptions about the ITS copy number can lead to under- or overestimation of Bd prevalence and pathogen load. The use of synthetic standards replicated previously published estimates of ITS copy number, whereas dPCR resulted in estimates that were consistently lower than previously published estimates. Standardizing methods will assist with comparison across studies and produce reliable estimates of prevalence and pathogen load in the wild, while using the same Bd strain for exposure experiments and zoospore standards in qPCR remains the best method for estimating parameters used in epidemiological studies.


Subject(s)
Anura/microbiology , Chytridiomycota/genetics , DNA, Ribosomal Spacer/genetics , Mycoses/microbiology , Animals , Genetic Variation
15.
Front Microbiol ; 8: 2535, 2017.
Article in English | MEDLINE | ID: mdl-29312226

ABSTRACT

In animals and plants, symbiotic bacteria can play an important role in disease resistance of host and are the focus of much current research. Globally, amphibian population declines and extinctions have occurred due to chytridiomycosis, a skin disease caused by the pathogen Batrachochytrium dendrobatidis (Bd). Currently amphibian skin bacteria are increasingly recognized as important symbiont communities with a relevant role in the defense against pathogens, as some bacteria can inhibit the growth of B. dendrobatidis. This study aims to document the B. dendrobatidis infection status of wild populations of a terrestrial cryptic frog (Philoria loveridgei), and to determine whether infection status is correlated with changes in the skin microbial communities. Skin samples of P. loveridgei were collected along an altitudinal range within the species distribution in subtropical rainforests in southeast Australia. Sampling was conducted in two years during two breeding seasons with the first classified as a "La Niña" year. We used Taqman real-time PCR to determine B. dendrobatidis infection status and 16S amplicon sequencing techniques to describe the skin community structure. We found B. dendrobatidis-positive frogs only in the second sampling year with low infection intensities, and no correlation between B. dendrobatidis infection status and altitude, frog sex or size. Skin bacterial diversity was significantly higher in P. loveridgei frogs sampled in the 1st year than in the 2nd year. In addition, 7.4% of the total OTUs were significantly more abundant in the 1st year compared to the 2nd year. We identified 67 bacterial OTUs with a significant positive correlation between infection intensity and an OTU's relative abundance. Forty-five percent of these OTUs belonged to the family Enterobacteriaceae. Overall, temporal variation was strongly associated with changes in B. dendrobatidis infection status and bacterial community structure of wild populations of P. loveridgei.

16.
Front Microbiol ; 7: 333, 2016.
Article in English | MEDLINE | ID: mdl-27014249

ABSTRACT

Skin bacterial communities can protect amphibians from a fungal pathogen; however, little is known about how these communities are maintained. We used a neutral model of community ecology to identify bacteria that are maintained on salamanders by selection or by dispersal from a bacterial reservoir (soil) and ecological drift. We found that 75% (9/12) of bacteria that were consistent with positive selection, <1% of bacteria that were consistent with random dispersal and none of the bacteria that were consistent under negative selection had a 97% or greater match to antifungal isolates. Additionally we performed an experiment where salamanders were either provided or denied a bacterial reservoir and estimated immigration and loss (emigration and local extinction) rates of bacteria on salamanders in both treatments. Loss was strongly related to bacterial richness, suggesting competition is important for structuring the community. Bacteria closely related to antifungal isolates were more likely to persist on salamanders with or without a bacterial reservoir, suggesting they had a competitive advantage. Furthermore, over-represented and under-represented operational taxonomic units (OTUs) had similar persistence on salamanders when a bacterial reservoir was present. However, under-represented OTUs were less likely to persist in the absence of a bacterial reservoir, suggesting that the over-represented and under-represented bacteria were selected against or for on salamanders through time. Our findings from the neutral model, migration and persistence analyses show that bacteria that exhibit a high similarity to antifungal isolates persist on salamanders, which likely protect hosts against pathogens and improve fitness. This research is one of the first to apply ecological theory to investigate assembly of host associated-bacterial communities, which can provide insights for probiotic bioaugmentation as a conservation strategy against disease.

17.
Front Microbiol ; 7: 68, 2016.
Article in English | MEDLINE | ID: mdl-26870025

ABSTRACT

Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called "omics," are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov-Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species.

18.
Appl Environ Microbiol ; 82(8): 2457-2466, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26873311

ABSTRACT

Amphibian populations worldwide are being threatened by the disease chytridiomycosis, which is caused by Batrachochytrium dendrobatidis To mitigate the effects of B. dendrobatidis, bioaugmentation of antifungal bacteria has been shown to be a promising strategy. One way to implement bioaugmentation is through indirect horizontal transmission, defined as the transfer of bacteria from a host to the environment and to another host. In addition, direct horizontal transmission among individuals can facilitate the spread of a probiotic in a population. In this study, we tested whether the antifungal bacterium Janthinobacterium lividum could be horizontally transferred, directly or indirectly, in a laboratory experiment using Lithobates clamitans tadpoles. We evaluated the ability of J. lividumto colonize the tadpoles' skin and to persist through time using culture-dependent and culture-independent techniques. We also tested whether the addition of J. lividum affected the skin community in L. clamitans tadpoles. We found that transmission occurred rapidly by direct and indirect horizontal transmission, but indirect transmission that included a potential substrate was more effective. Even though J. lividum colonized the skin, its relative abundance on the tadpole skin decreased over time. The inoculation of J. lividum did not significantly alter the skin bacterial diversity of L. clamitans tadpoles, which was dominated by Pseudomonas Our results show that indirect horizontal transmission can be an effective bioaugmentation method. Future research is needed to determine the best conditions, including the presence of substrates, under which a probiotic can persist on the skin so that bioaugmentation becomes a successful strategy to mitigate chytridiomycosis.


Subject(s)
Larva/microbiology , Oxalobacteraceae/isolation & purification , Probiotics , Rana clamitans/microbiology , Animals , Skin/microbiology
19.
ISME J ; 10(7): 1682-95, 2016 07.
Article in English | MEDLINE | ID: mdl-26744810

ABSTRACT

Symbiotic bacteria on amphibian skin can inhibit growth of the fungus Batrachochytrium dendrobatidis (Bd) that has caused dramatic population declines and extinctions of amphibians in the Neotropics. It remains unclear how the amphibians' skin microbiota is influenced by environmental bacterial reservoirs, host-associated factors such as susceptibility to pathogens, and pathogen presence in tropical amphibians. We sampled skin bacteria from five co-occurring frog species that differ in Bd susceptibility at one Bd-naive site, and sampled one of the non-susceptible species from Bd-endemic and Bd-naive sites in Panama. We hypothesized that skin bacterial communities (1) would be distinct from the surrounding environment regardless of the host habitat, (2) would differ between Bd susceptible and non-susceptible species and (3) would differ on hosts in Bd-naive and Bd-endemic sites. We found that skin bacterial communities were enriched in bacterial taxa that had low relative abundances in the environment. Non-susceptible species had very similar skin bacterial communities that were enriched in particular taxa such as the genera Pseudomonas and Acinetobacter. Bacterial communities of Craugastor fitzingeri in Bd-endemic sites were less diverse than in the naive site, and differences in community structure across sites were explained by changes in relative abundance of specific bacterial taxa. Our results indicate that skin microbial structure was associated with host susceptibility to Bd and might be associated to the history of Bd presence at different sites.


Subject(s)
Anura/microbiology , Bacteria/genetics , Chytridiomycota/physiology , Microbiota/immunology , Animals , Anura/immunology , Bacteria/classification , Disease Susceptibility , Skin/microbiology
20.
Front Microbiol ; 6: 1171, 2015.
Article in English | MEDLINE | ID: mdl-26579083

ABSTRACT

Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont microbial systems as it is in many macro-systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...