Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 20(1): e1011710, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38206985

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite that infects one-third of the world's human population and establishes infection in the brain. Cerebral immune cell infiltration is critical for controlling the parasite, but little is known about the molecular cues guiding immune cells to the brain during infection. Activated astrocytes produce CCL2, a chemokine that mediates inflammatory monocyte recruitment to tissues by binding to the CCR2 receptor. We detected elevated CCL2 production in the brains of C57BL/6J mice by 15 days after T. gondii infection. Utilizing confocal microscopy and intracellular flow cytometry, we identified microglia and brain-infiltrating myeloid cells as the main producers of CCL2 during acute infection, and CCL2 was specifically produced in regions of parasite infection in the brain. In contrast, astrocytes became the dominant CCL2 producer during chronic T. gondii infection. To determine the role of astrocyte-derived CCL2 in mobilizing immune cells to the brain and controlling T. gondii infection, we generated GFAP-Cre x CCL2fl/fl mice, in which astrocytes are deficient in CCL2 production. We observed significantly decreased immune cell recruitment and increased parasite burden in the brain during chronic, but not acute, infection of mice deficient in astrocyte CCL2 production, without an effect on peripheral immune responses. To investigate potential mechanisms explaining the reduced control of T. gondii infection, we analyzed key antimicrobial and immune players in host defense against T. gondii and detected a reduction in iNOS+ myeloid cells, and T. gondii-specific CD4+ T cells in the knockout mice. These data uncover a critical role for astrocyte-derived CCL2 in immune cell recruitment and parasite control in the brain during chronic, but not acute, T. gondii infection.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , Humans , Mice , Astrocytes/metabolism , Brain/metabolism , Chemokine CCL2/metabolism , Mice, Inbred C57BL , Mice, Knockout , Toxoplasma/metabolism , Toxoplasmosis/metabolism
2.
Am J Pathol ; 194(2): 225-237, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065361

ABSTRACT

Cerebral edema frequently develops in the setting of brain infection and can contribute to elevated intracranial pressure, a medical emergency. How excess fluid is cleared from the brain is not well understood. Previous studies have shown that interstitial fluid is transported out of the brain along perivascular channels that collect into the cerebrospinal fluid (CSF)-filled subarachnoid space. CSF is then removed from the central nervous system through venous and lymphatic routes. The current study tested the hypothesis that increasing lymphatic drainage of CSF would promote clearance of cerebral edema fluid during infection with the neurotropic parasite Toxoplasma gondii. Fluorescent microscopy and magnetic resonance imaging was used to show that C57BL/6 mice develop vasogenic edema 4 to 5 weeks after infection with T. gondii. Tracer experiments were used to evaluate how brain infection affects meningeal lymphatic function, which demonstrated a decreased rate in CSF outflow in T. gondii-infected mice. Next, mice were treated with a vascular endothelial growth factor (VEGF)-C-expressing viral vector, which induced meningeal lymphangiogenesis and improved CSF outflow in chronically infected mice. No difference in cerebral edema was observed between mice that received VEGF-C and those that rececived sham treatment. Therefore, although VEGF-C treatment can improve lymphatic outflow in mice infected with T. gondii, this effect does not lead to increased clearance of edema fluid from the brains of these mice.


Subject(s)
Brain Edema , Toxoplasma , Toxoplasmosis , Vascular Endothelial Growth Factor C , Animals , Mice , Brain/pathology , Brain Edema/parasitology , Brain Edema/therapy , Mice, Inbred C57BL , Toxoplasmosis/complications , Toxoplasmosis/therapy , Vascular Endothelial Growth Factor C/therapeutic use
3.
Biomedicines ; 11(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38001877

ABSTRACT

Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.

4.
Elife ; 112022 12 21.
Article in English | MEDLINE | ID: mdl-36541708

ABSTRACT

The discovery of meningeal lymphatic vessels that drain the CNS has prompted new insights into how immune responses develop in the brain. In this study, we examined how T cell responses against CNS-derived antigen develop in the context of infection. We found that meningeal lymphatic drainage promotes CD4+ and CD8+ T cell responses against the neurotropic parasite Toxoplasma gondii in mice, and we observed changes in the dendritic cell compartment of the dural meninges that may support this process. Indeed, we found that mice chronically, but not acutely, infected with T. gondii exhibited a significant expansion and activation of type 1 and type 2 conventional dendritic cells (cDC) in the dural meninges. cDC1s and cDC2s were both capable of sampling cerebrospinal fluid (CSF)-derived protein and were found to harbor processed CSF-derived protein in the draining deep cervical lymph nodes. Disrupting meningeal lymphatic drainage via ligation surgery led to a reduction in CD103+ cDC1 and cDC2 number in the deep cervical lymph nodes and caused an impairment in cDC1 and cDC2 maturation. Concomitantly, lymphatic vessel ligation impaired CD4+ and CD8+ T cell activation, proliferation, and IFN-γ production at this site. Surprisingly, however, parasite-specific T cell responses in the brain remained intact following ligation, which may be due to concurrent activation of T cells at non-CNS-draining sites during chronic infection. Collectively, our work reveals that CNS lymphatic drainage supports the development of peripheral T cell responses against T. gondii but remains dispensable for immune protection of the brain.


Subject(s)
Toxoplasma , Mice , Animals , Brain/metabolism , Meninges/pathology , CD8-Positive T-Lymphocytes , Communicable Disease Control
5.
PLoS Pathog ; 18(9): e1010637, 2022 09.
Article in English | MEDLINE | ID: mdl-36067217

ABSTRACT

Toxoplasma gondii is a ubiquitous intracellular protozoan parasite that establishes a life-long chronic infection largely restricted to the central nervous system (CNS). Constant immune pressure, notably IFN-γ-STAT1 signaling, is required for preventing fatal pathology during T. gondii infection. Here, we report that abrogation of STAT1 signaling in microglia, the resident immune cells of the CNS, is sufficient to induce a loss of parasite control in the CNS and susceptibility to toxoplasmic encephalitis during the early stages of chronic infection. Using a microglia-specific genetic labeling and targeting system that discriminates microglia from blood-derived myeloid cells that infiltrate the brain during infection, we find that, contrary to previous in vitro reports, microglia do not express inducible nitric-oxide synthase (iNOS) during T. gondii infection in vivo. Instead, transcriptomic analyses of microglia reveal that STAT1 regulates both (i) a transcriptional shift from homeostatic to "disease-associated microglia" (DAM) phenotype conserved across several neuroinflammatory models, including T. gondii infection, and (ii) the expression of anti-parasitic cytosolic molecules that are required for eliminating T. gondii in a cell-intrinsic manner. Further, genetic deletion of Stat1 from microglia during T. gondii challenge leads to fatal pathology despite largely equivalent or enhanced immune effector functions displayed by brain-infiltrating immune populations. Finally, we show that microglial STAT1-deficiency results in the overrepresentation of the highly replicative, lytic tachyzoite form of T. gondii, relative to its quiescent, semi-dormant bradyzoite form typical of chronic CNS infection. Our data suggest an overall protective role of CNS-resident microglia against T. gondii infection, illuminating (i) general mechanisms of CNS-specific immunity to infection (ii) and a clear role for IFN-STAT1 signaling in regulating a microglial activation phenotype observed across diverse neuroinflammatory disease states.


Subject(s)
Encephalitis , STAT1 Transcription Factor , Toxoplasma , Toxoplasmosis, Cerebral , Animals , Brain/pathology , Encephalitis/metabolism , Encephalitis/pathology , Mice , Microglia/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Toxoplasma/metabolism , Toxoplasmosis, Cerebral/metabolism
6.
PLoS Pathog ; 18(6): e1010296, 2022 06.
Article in English | MEDLINE | ID: mdl-35727849

ABSTRACT

Initial TCR engagement (priming) of naive CD8+ T cells results in T cell expansion, and these early events influence the generation of diverse effector and memory populations. During infection, activated T cells can re-encounter cognate antigen, but how these events influence local effector responses or formation of memory populations is unclear. To address this issue, OT-I T cells which express the Nur77-GFP reporter of TCR activation were paired with the parasite Toxoplasma gondii that expresses OVA to assess how secondary encounter with antigen influences CD8+ T cell responses. During acute infection, TCR stimulation in affected tissues correlated with parasite burden and was associated with markers of effector cells while Nur77-GFP- OT-I showed signs of effector memory potential. However, both Nur77-GFP- and Nur77-GFP+ OT-I from acutely infected mice formed similar memory populations when transferred into naive mice. During the chronic stage of infection in the CNS, TCR activation was associated with large scale transcriptional changes and the acquisition of an effector T cell phenotype as well as the generation of a population of CD103+ CD69+ Trm like cells. While inhibition of parasite replication resulted in reduced effector responses it did not alter the Trm population. These data sets highlight that recent TCR activation contributes to the phenotypic heterogeneity of the CD8+ T cell response but suggest that this process has a limited impact on memory populations at acute and chronic stages of infection.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , CD8-Positive T-Lymphocytes , Immunologic Memory , Mice , Receptors, Antigen, T-Cell
7.
Trends Parasitol ; 38(3): 217-229, 2022 03.
Article in English | MEDLINE | ID: mdl-35039238

ABSTRACT

Microglia, the resident immune cells of the central nervous system (CNS), are poised to respond to neuropathology. Microglia play multiple roles in maintaining homeostasis and promoting inflammation in numerous disease states. The study of microglial innate immune programs has largely focused on exploring neurodegenerative disease states with the use of genetic targeting approaches. Our understanding of how microglia participate in immune responses against pathogens is just beginning to take shape. Here, we review existing animal models of CNS infection, with a focus on how microglial physiology and inflammatory processes control protozoan and viral infections of the brain. We further discuss how microglial participation in over-exuberant immune responses can drive immunopathology that is detrimental to CNS health and homeostasis.


Subject(s)
Central Nervous System Infections , Neurodegenerative Diseases , Toxoplasma , Animals , Central Nervous System , Central Nervous System Infections/pathology , Microglia/pathology , Neurodegenerative Diseases/pathology
8.
PLoS Pathog ; 16(10): e1009027, 2020 10.
Article in English | MEDLINE | ID: mdl-33108405

ABSTRACT

It is of great interest to understand how invading pathogens are sensed within the brain, a tissue with unique challenges to mounting an immune response. The eukaryotic parasite Toxoplasma gondii colonizes the brain of its hosts, and initiates robust immune cell recruitment, but little is known about pattern recognition of T. gondii within brain tissue. The host damage signal IL-33 is one protein that has been implicated in control of chronic T. gondii infection, but, like many other pattern recognition pathways, IL-33 can signal peripherally, and the specific impact of IL-33 signaling within the brain is unclear. Here, we show that IL-33 is expressed by oligodendrocytes and astrocytes during T. gondii infection, is released locally into the cerebrospinal fluid of T. gondii-infected animals, and is required for control of infection. IL-33 signaling promotes chemokine expression within brain tissue and is required for the recruitment and/or maintenance of blood-derived anti-parasitic immune cells, including proliferating, IFN-γ-expressing T cells and iNOS-expressing monocytes. Importantly, we find that the beneficial effects of IL-33 during chronic infection are not a result of signaling on infiltrating immune cells, but rather on radio-resistant responders, and specifically, astrocytes. Mice with IL-33 receptor-deficient astrocytes fail to mount an adequate adaptive immune response in the CNS to control parasite burden-demonstrating, genetically, that astrocytes can directly respond to IL-33 in vivo. Together, these results indicate a brain-specific mechanism by which IL-33 is released locally, and sensed locally, to engage the peripheral immune system in controlling a pathogen.


Subject(s)
Astrocytes/immunology , Interleukin-33/immunology , Toxoplasmosis, Cerebral/immunology , Adult , Animals , Astrocytes/metabolism , Astrocytes/physiology , Brain/metabolism , Female , Humans , Immunity , Interferon-gamma/immunology , Interleukin-33/metabolism , Male , Mice , Mice, Inbred C57BL , Monocytes/immunology , Signal Transduction , Toxoplasma/metabolism , Toxoplasma/parasitology , Toxoplasmosis/metabolism , Toxoplasmosis, Cerebral/metabolism
9.
Nat Commun ; 11(1): 3687, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703941

ABSTRACT

Microglia, resident immune cells of the CNS, are thought to defend against infections. Toxoplasma gondii is an opportunistic infection that can cause severe neurological disease. Here we report that during T. gondii infection a strong NF-κB and inflammatory cytokine transcriptional signature is overrepresented in blood-derived macrophages versus microglia. Interestingly, IL-1α is enriched in microglia and IL-1ß in macrophages. We find that mice lacking IL-1R1 or IL-1α, but not IL-1ß, have impaired parasite control and immune cell infiltration within the brain. Further, we show that microglia, not peripheral myeloid cells, release IL-1α ex vivo. Finally, we show that ex vivo IL-1α release is gasdermin-D dependent, and that gasdermin-D and caspase-1/11 deficient mice show deficits in brain inflammation and parasite control. These results demonstrate that microglia and macrophages are differently equipped to propagate inflammation, and that in chronic T. gondii infection, microglia can release the alarmin IL-1α, promoting neuroinflammation and parasite control.


Subject(s)
Interleukin-1alpha/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Microglia/immunology , Phosphate-Binding Proteins/metabolism , Toxoplasma/immunology , Toxoplasmosis, Cerebral/immunology , Animals , Brain/cytology , Brain/immunology , Brain/parasitology , Brain/pathology , Cells, Cultured , Chronic Disease , Disease Models, Animal , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Microglia/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/immunology , Toxoplasma/isolation & purification , Toxoplasmosis, Cerebral/blood , Toxoplasmosis, Cerebral/parasitology , Toxoplasmosis, Cerebral/pathology
11.
PLoS One ; 15(1): e0228251, 2020.
Article in English | MEDLINE | ID: mdl-31978191

ABSTRACT

Resistance to chronic Toxoplasma gondii infection requires ongoing recruitment of T cells to the brain. Thus, the factors that promote, sustain, and regulate the T cell response to the parasite in the brain are of great interest. The costimulatory molecule ICOS (inducible T cell costimulator) has been reported to act largely through the PI3K pathway in T cells, and can play pro-inflammatory or pro-regulatory roles depending on the inflammatory context and T cell type being studied. During infection with T. gondii, ICOS promotes early T cell responses, while in the chronic stage of infection ICOS plays a regulatory role by limiting T cell responses in the brain. We sought to characterize the role of ICOS signaling through PI3K during chronic infection using two models of ICOS deficiency: total ICOS knockout (KO) mice and ICOS YF mice that are unable to activate PI3K signaling. Overall, ICOS KO and ICOS YF mice had similar severe defects in parasite-specific IgG production and parasite control compared to WT mice. Additionally, we observed expanded effector T cell populations and a loss of Treg frequency in the brains of both ICOS KO and ICOS YF mice. When comparing the remaining Treg populations in infected mice, ICOS KO Tregs expressed WT levels of Foxp3 and CD25, while ICOS YF Tregs expressed significantly less Foxp3 and CD25 compared to both WT and ICOS KO mice. Together, these results suggest that PI3K-independent signaling downstream of ICOS plays an important role in Treg stability in the context of chronic inflammation.


Subject(s)
Brain/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Toxoplasmosis/pathology , Animals , Antibodies, Protozoan/blood , Brain/cytology , Brain/immunology , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Inducible T-Cell Co-Stimulator Protein/deficiency , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Leukocytes, Mononuclear/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Phosphatidylinositol 3-Kinases/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology
12.
J Exp Med ; 216(6): 1268-1279, 2019 06 03.
Article in English | MEDLINE | ID: mdl-30975892

ABSTRACT

Type 2 inflammation drives the clearance of gastrointestinal helminth parasites, which infect over two billion people worldwide. Basophils are innate immune cells that support host-protective type 2 inflammation during murine infection with the helminth Trichuris muris However, the mechanisms required for basophil function and gene expression regulation in this context remain unclear. We show that during T. muris infection, basophils localized to the intestine and up-regulated Notch receptor expression, rendering them sensitive to Notch signals that rapidly regulate gene expression programs. In vitro, Notch inhibition limited basophil cytokine production in response to cytokine stimulation. Basophil-intrinsic Notch signaling was required for T. muris-elicited changes in genome-wide basophil transcriptional programs. Mice lacking basophil-intrinsic functional Notch signaling had impaired worm clearance, decreased intestinal type 2 inflammation, altered basophil localization in the intestine, and decreased CD4+ T helper 2 cell responses following infection. These findings demonstrate that Notch is required for basophil gene expression and effector function associated with helminth expulsion during type 2 inflammation.


Subject(s)
Basophils/immunology , Inflammation/pathology , Receptors, Notch/metabolism , Signal Transduction , Animals , Cecum/parasitology , Female , Gene Expression Regulation , Inflammation/complications , Interleukins/metabolism , Male , Mice, Inbred C57BL , Trichuris/physiology , Up-Regulation
13.
J Immunol ; 202(6): 1755-1766, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30718297

ABSTRACT

Control of chronic CNS infection with the parasite Toxoplasma gondii requires ongoing T cell responses in the brain. Immunosuppressive cytokines are also important for preventing lethal immunopathology during chronic infection. To explore the loss of suppressive cytokines exclusively during the chronic phase of infection, we blocked IL-10R in chronically infected mice. Consistent with previous reports, IL-10R blockade led to severe, fatal tissue destruction associated with widespread changes in the inflammatory response, including increased APC activation, expansion of CD4+ T cells, and neutrophil recruitment to the brain. We then sought to identify regulatory mechanisms contributing to IL-10 production, focusing on ICOS, a molecule implicated in IL-10 production. Unexpectedly, ICOS ligand (ICOSL) blockade led to a local expansion of effector T cells in the brain without affecting IL-10 production or APC activation. Instead, we found that ICOSL blockade led to changes in T cells associated with their proliferation and survival. We observed increased expression of IL-2-associated signaling molecules CD25, STAT5 phosphorylation, Ki67, and Bcl-2 in T cells in the brain, along with decreased apoptosis. Interestingly, increases in CD25 and Bcl-2 were not observed following IL-10R blockade. Also, unlike IL-10R blockade, ICOSL blockade led to an expansion of both CD8+ and CD4+ T cells in the brain, with no expansion of peripheral T cells or neutrophil recruitment to the brain and no severe tissue destruction. Overall, these results suggest that IL-10 and ICOS differentially regulate T cell responses in the brain during chronic T. gondii infection.


Subject(s)
Brain/parasitology , Inducible T-Cell Co-Stimulator Protein/immunology , Interleukin-10/immunology , T-Lymphocytes/immunology , Toxoplasmosis/immunology , Animals , Brain/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL
14.
Nat Neurosci ; 21(10): 1380-1391, 2018 10.
Article in English | MEDLINE | ID: mdl-30224810

ABSTRACT

Neuroinflammatory diseases, such as multiple sclerosis, are characterized by invasion of the brain by autoreactive T cells. The mechanism for how T cells acquire their encephalitogenic phenotype and trigger disease remains, however, unclear. The existence of lymphatic vessels in the meninges indicates a relevant link between the CNS and peripheral immune system, perhaps affecting autoimmunity. Here we demonstrate that meningeal lymphatics fulfill two critical criteria: they assist in the drainage of cerebrospinal fluid components and enable immune cells to enter draining lymph nodes in a CCR7-dependent manner. Unlike other tissues, meningeal lymphatic endothelial cells do not undergo expansion during inflammation, and they express a unique transcriptional signature. Notably, the ablation of meningeal lymphatics diminishes pathology and reduces the inflammatory response of brain-reactive T cells during an animal model of multiple sclerosis. Our findings demonstrate that meningeal lymphatics govern inflammatory processes and immune surveillance of the CNS and pose a valuable target for therapeutic intervention.


Subject(s)
Encephalitis/pathology , Encephalitis/physiopathology , Lymphatic Vessels/physiology , Meninges/pathology , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Central Nervous System/immunology , Central Nervous System/pathology , Dendritic Cells/pathology , Disease Models, Animal , Encephalitis/chemically induced , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lymph Nodes/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , Myelin-Oligodendrocyte Glycoprotein/toxicity , Peptide Fragments/toxicity , Photosensitizing Agents/pharmacology , Receptors, CCR7/deficiency , Receptors, CCR7/genetics , Spleen/pathology , T-Lymphocytes/physiology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
15.
J Exp Med ; 215(7): 1789-1801, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29941548

ABSTRACT

Phagocytosis of synaptic material by microglia is critical for central nervous system development. Less well understood is this microglial function in the injured adult brain. Assay of microglial phagocytosis is challenging, because peripheral myeloid cells engraft the site of injury, which could obscure interpretation of microglial roles. The model used here, optic nerve crush injury, results in degeneration of synapses in the dorsal lateral geniculate nucleus (dLGN), which stimulates rapid activation and engulfment of synaptic material by resident microglia without myeloid cell engraftment. Pharmacological depletion of microglia causes postinjury accumulation of synaptic debris, suggesting that microglia are the dominant postinjury phagocytes. Genetic or pharmacological manipulations revealed that neuronal activity does not trigger microglia phagocytosis after injury. RNA sequencing reveals C1q and CD11b/CR3 involvement in clearance of debris by dLGN-resident microglia. Indeed, C1qa-/- and Itgam-/- mice exhibit impaired postinjury debris clearance. Our results show how neurodegenerative debris is cleared by microglia and offers a model for studying its mechanisms and physiological roles.


Subject(s)
Central Nervous System/immunology , Central Nervous System/injuries , Complement System Proteins/metabolism , Microglia/metabolism , Neurons/metabolism , Synapses/metabolism , Animals , CD11b Antigen/metabolism , Cell Proliferation , Central Nervous System/pathology , Gene Expression Profiling , Geniculate Bodies/pathology , Mice, Inbred C57BL , Microglia/pathology , Nerve Crush , Nerve Degeneration/pathology , Neurons/pathology , Optic Nerve/pathology , Phagocytosis , Synapses/pathology
16.
J Immunol ; 198(10): 4054-4061, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28389591

ABSTRACT

Regulatory T cells (Tregs) play an important role in the CNS during multiple infections, as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, Tregs in the CNS during T. gondii infection are Th1 polarized, as exemplified by their T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4+ T cells, an MHC class II tetramer reagent specific for T. gondii did not recognize Tregs isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector T cells and Tregs in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Tregs were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4+ T cells within the meninges were highly migratory, whereas Tregs moved more slowly and were found in close association with CD11c+ cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c+ cells, mice were treated with anti-LFA-1 Abs to reduce the number of CD11c+ cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c+ cells and increased the speed of Treg migration. These data suggest that Tregs are anatomically restricted within the CNS, and their interaction with CD11c+ populations regulates their local behavior during T. gondii infection.


Subject(s)
CD11c Antigen/immunology , Meninges/immunology , T-Lymphocytes, Regulatory/physiology , Toxoplasmosis, Cerebral/immunology , Animals , CD11c Antigen/genetics , CD11c Antigen/metabolism , CD4-Positive T-Lymphocytes/immunology , Cell Movement , Intravital Microscopy , Lymphocyte Activation , Mice , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Toxoplasma/immunology
18.
mBio ; 7(6)2016 11 08.
Article in English | MEDLINE | ID: mdl-27834206

ABSTRACT

The local production of gamma interferon (IFN-γ) is important to control Toxoplasma gondii in the brain, but the basis for these protective effects is not fully understood. The studies presented here reveal that the ability of IFN-γ to inhibit parasite replication in astrocytes in vitro is dependent on signal transducer and activator of transcription 1 (STAT1) and that mice that specifically lack STAT1 in astrocytes are unable to limit parasite replication in the central nervous system (CNS). This susceptibility is associated with a loss of antimicrobial pathways and increased cyst formation in astrocytes. These results identify a critical role for astrocytes in limiting the replication of an important opportunistic pathogen. IMPORTANCE: Astrocytes are the most numerous cell type in the brain, and they are activated in response to many types of neuroinflammation, but their function in the control of CNS-specific infection is unclear. The parasite Toxoplasma gondii is one of the few clinically relevant microorganisms that naturally infects astrocytes, and the studies presented here establish that the ability of astrocytes to inhibit parasite replication is essential for the local control of this opportunistic pathogen. Together, these studies establish a key role for astrocytes as effector cells and in the coordination of many aspects of the protective immune response that operates in the brain.


Subject(s)
Astrocytes/parasitology , Interferon-gamma/immunology , STAT1 Transcription Factor/metabolism , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/parasitology , Animals , Astrocytes/immunology , Astrocytes/metabolism , Brain/immunology , Brain/parasitology , Cells, Cultured , Interferon-gamma/metabolism , Mice , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , Signal Transduction
20.
Trends Immunol ; 36(10): 569-577, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26431936

ABSTRACT

Whereas the study of the interactions between the immune system and the central nervous system (CNS) has often focused on pathological conditions, the importance of neuroimmune communication in CNS homeostasis and function has become clear over that last two decades. Here we discuss the progression of our understanding of the interaction between the peripheral immune system and the CNS. We examine the notion of immune privilege of the CNS in light of both earlier findings and recent studies revealing a functional meningeal lymphatic system that drains cerebrospinal fluid (CSF) to the deep cervical lymph nodes, and consider the implications of a revised perspective on the immune privilege of the CNS on the etiology and pathology of different neurological disorders.


Subject(s)
Central Nervous System/immunology , Animals , Central Nervous System/physiology , Central Nervous System Diseases/immunology , Humans , Immune System/physiology , Lymphatic Diseases/immunology , Lymphatic System/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...