Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 639: 1038-1050, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29929273

ABSTRACT

Soil erosion caused by wind is a serious environmental problem that results in land degradation and threatens sustainable development. Accurately evaluating wind erosion dynamics is important for reducing the hazard of wind erosion. Separating the climatic and anthropogenic causes of wind erosion can improve the understanding of its driving mechanisms. Based on meteorological, remote sensing and field observation data, we applied the Revised Wind Erosion Equation (RWEQ) to simulate wind erosion in Inner Mongolia, China from 1990 to 2015. We used the variable control method by input of the average climate conditions to calculate human-induced wind erosion. The difference between natural wind erosion and human-induced wind erosion was determined to assess the effect of climate change on wind erosion. The results showed that the wind erosion modulus had a remarkable decline with a slope of 52.23 t/km2/a from 1990 to 2015. During 26 years, the average wind erosion for Inner Mongolia amounted to 63.32 billion tons. Wind erosion showed an overall significant decline of 49.23% and the partial severer erosion hazard significantly increased by 7.11%. Of the significant regional decline, 40.72% was caused by climate changes, and 8.51% was attributed to ecological restoration programs. For the significant regional increases of wind erosion, 4.29% was attributed to climate changes and 2.82% to human activities, mainly overgrazing and land use/cover changes. During the study, the driving forces in Inner Mongolia of wind erosion dynamics differed spatially. Timely monitoring based on multi-source data and highlighting the importance of positive human activities by increasing vegetation coverage for deserts, reducing grazing pressure on grasslands, establishing forests as windbreaks and optimizing crop planting rotations of farmlands can all act to reduce and control wind erosion.


Subject(s)
Climate Change , Environmental Monitoring , Wind , China , Conservation of Natural Resources , Human Activities , Humans , Soil
2.
Int J Biometeorol ; 60(6): 827-41, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26449350

ABSTRACT

Water-use efficiency (WUE), which links carbon and water cycles, is an important indicator of assessing the interactions between ecosystems and regional climate. Using chamber methods with and without plant removal treatments, we investigated WUE and evapotranspiration (ET) components in three ecosystems with different land-use types in Northern China pastoral-farming ecotone. In comparison, ET of the ecosystems with grazing exclusion and cultivating was 6.7 and 13.4 % higher than that of the ecosystem with free grazing. The difference in ET was primarily due to the different magnitudes of soil water evaporation (E) rather than canopy transpiration (T). Canopy WUE (WUEc, i.e., the ratio of gross primary productivity to T) at the grazing excluded and cultivated sites was 17 and 36 % higher than that at the grazing site. Ecosystem WUE (WUEnep, i.e., the ratio of net ecosystem productivity to ET) at the cultivated site was 34 and 28 % lower in comparison with grazed and grazing excluded stepped, respectively. The varied leaf area index (LAI) of different land uses was correlated with microclimate and ecosystem vapor/carbon exchange. The LAI changing with land uses should be the primary regulation of grassland WUE. These findings facilitate the mechanistic understanding of carbon-water relationships at canopy and ecosystem levels and projection of the effects of land-use change on regional climate and productivity.


Subject(s)
Ecosystem , Water , Agriculture , Biomass , Carbon Dioxide/metabolism , China , Models, Theoretical , Plant Transpiration , Soil/chemistry , Volatilization , Water/chemistry , Water/metabolism , Weather
3.
Ecol Evol ; 3(13): 4310-25, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24340174

ABSTRACT

China has frequently been questioned about the data transparency and accuracy of its energy and emission statistics. Satellite-derived remote sensing data potentially provide a useful tool to study the variation in carbon dioxide (CO2) mass over areas of the earth's surface. In this study, Greenhouse gases Observing SATellite (GOSAT) tropospheric CO2 concentration data and NCEP/NCAR reanalysis tropopause data were integrated to obtain estimates of tropospheric CO2 mass variations over the surface of China. These variations were mapped to show seasonal and spatial patterns with reference to China's provincial areas. The estimates of provincial tropospheric CO2 were related to statistical estimates of CO2 emissions for the provinces and considered with reference to provincial populations and gross regional products (GRP). Tropospheric CO2 masses for the Chinese provinces ranged from 53 ± 1 to 14,470 ± 63 million tonnes were greater for western than for eastern provinces and were primarily a function of provincial land area. Adjusted for land area troposphere CO2 mass was higher for eastern and southern provinces than for western and northern provinces. Tropospheric CO2 mass over China varied with season being highest in July and August and lowest in January and February. The average annual emission from provincial energy statistics of CO2 by China was estimated as 10.3% of the average mass of CO2 in the troposphere over China. The relationship between statistical emissions relative to tropospheric CO2 mass was higher than 20% for developed coastal provinces of China, with Shanghai, Tianjin, and Beijing having exceptionally high percentages. The percentages were generally lower than 10% for western inland provinces. Provincial estimates of emissions of CO2 were significantly positively related to provincial populations and gross regional products (GRP) when the values for the provincial municipalities Shanghai, Tianjin, and Beijing were excluded from the linear regressions. An increase in provincial GRP per person was related to a curvilinear increase in CO2 emissions, this being particularly marked for Beijing, Tianjin, and especially Shanghai. The absence of detection of specific elevation of CO2 mass in the troposphere above these municipalities may relate to the rapid mixing and dispersal of CO2 emissions or the proportion of the depth of the troposphere sensed by GOSAT.

4.
PLoS One ; 8(4): e60794, 2013.
Article in English | MEDLINE | ID: mdl-23565275

ABSTRACT

Relationships of foliar carbon isotope composition (δ(13)C) with foliar C, N, P, K, Ca, Mg contents and their ratios of 219 C3 species leaf samples, obtained in August in 2004 to 2007 from 82 high altitude grassland sites on the Qinghai-Tibet Plateau China, were examined. This was done with reference to the proposition that foliar δ(13)C increases with altitude and separately for the life-form groups of graminoids, forbs and shrubs and for the genera Stipa and Kobresia. For all samples, foliar δ(13)C was negatively related to foliar K, P and ∑K+ Ca+ Mg, and positively correlated to foliar C, C/N and C/P. The significance of these correlations differed for the taxonomic and life-form groups. Lack of a relationship of foliar δ(13)C with foliar N was inconsistent with the majority of studies that have shown foliar δ(13)C to be positively related to foliar N due to a decrease of Ci/Ca (the ratio between intercellular and atmospheric concentration of CO2) and explained as a result of greater photosynthetic capacity at higher foliar N concentration. However this inconsistency relates to other high altitude studies that have found that photosynthetic capacity remains constant as foliar N increases. After accounting for the altitudinal relationship with foliar δ(13)C, of the elements only the K effect was significant and was most strongly expressed for Kobresia. It is concluded that factors critical to plant survival and growth at very high altitudes, such as low atmospheric pressure and low temperatures, may preclude expression of relationships between foliar δ(13)C and foliar elements that have been observed at lower altitudes.


Subject(s)
Altitude , Carbon Isotopes/chemistry , Plant Leaves/chemistry , Plants/chemistry , Carbon/chemistry , China , Cyperaceae/chemistry , Nitrogen/chemistry , Tibet
5.
Environ Monit Assess ; 170(1-4): 571-84, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20041346

ABSTRACT

Inter-annual dynamics of grassland yield of the Three Rivers Headwaters Region of Qinghai-Tibet Plateau of China in 1988-2005 was analyzed using the GLO-PEM model, and the herbage supply function was evaluated. The results indicate that while grassland yield in the region showed marked inter-annual fluctuation there was a trend of increased yield over the 18 years of the study. This increase was especially marked for Alpine Desert and Alpine Steppe and in the west of the region. The inter-annual coefficient of variation of productivity increased from the east to the west of the region and from Marsh, Alpine Meadow, Alpine Steppe, Temperate Steppe to Alpine Desert grasslands. Climate change, particularly increased temperatures in the region during the study period, is suggested to be the main cause of increased grassland yield. However, reduced grazing pressure and changes to the seasonal pattern of grazing could also have influenced the grassland yield trend. These findings indicate the importance of understanding the function of the grassland ecosystems in the region and the effect of climate change on them especially in regard to their use to supply forage for animal production. Reduction of grazing pressure, especially during winter, is indicated to be critical for the restoration and sustainable use of grassland ecosystems in the region.


Subject(s)
Climate Change , Poaceae/growth & development , China , Ecosystem , Environmental Monitoring , Models, Theoretical , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL