Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(10): 113175, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37756163

ABSTRACT

The mechanical properties of solid tumors influence tumor cell phenotype and the ability to invade surrounding tissues. Using bioengineered scaffolds to provide a matrix microenvironment for patient-derived glioblastoma (GBM) spheroids, this study demonstrates that a soft, brain-like matrix induces GBM cells to shift to a glycolysis-weighted metabolic state, which supports invasive behavior. We first show that orthotopic murine GBM tumors are stiffer than peritumoral brain tissues, but tumor stiffness is heterogeneous where tumor edges are softer than the tumor core. We then developed 3D scaffolds with µ-compressive moduli resembling either stiffer tumor core or softer peritumoral brain tissue. We demonstrate that the softer matrix microenvironment induces a shift in GBM cell metabolism toward glycolysis, which manifests in lower proliferation rate and increased migration activities. Finally, we show that these mechanical cues are transduced from the matrix via CD44 and integrin receptors to induce metabolic and phenotypic changes in cancer cells.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Glioblastoma/pathology , Cell Line, Tumor , Brain/metabolism , Brain Neoplasms/metabolism , Tumor Microenvironment
2.
Adv Healthc Mater ; 12(14): e2203143, 2023 06.
Article in English | MEDLINE | ID: mdl-36694362

ABSTRACT

Increased secretion of hyaluronic acid (HA), a glycosaminoglycan abundant in the brain extracellular matrix (ECM), correlates with worse clinical outcomes for glioblastoma (GBM) patients. GBM cells aggressively invade the brain parenchyma while encountering spatiotemporal changes in their local ECM, including HA concentration. To investigate how varying HA concentrations affect GBM invasion, patient-derived GBM cells are cultured within a soft, 3D matrix in which HA concentration is precisely varied and cell migration observed. Data demonstrate that HA concentration can determine the invasive activity of patient-derived GBM cells in a biphasic and highly sensitive manner, where the absolute concentration of HA at which cell migration peaked is specific to each patient-derived line. Furthermore, evidence that this response relies on phosphorylated ezrin, which interacts with the intracellular domain of HA-engaged CD44 to effectively link the actin cytoskeleton to the local ECM is provided. Overall, this study highlights CD44-HA binding as a major mediator of GBM cell migration that acts independently of integrins and focal adhesion complexes and suggests that targeting HA-CD44-ezrin interactions represents a promising therapeutic strategy to prevent tumor cell invasion in the brain.


Subject(s)
Glioblastoma , Humans , Glioblastoma/pathology , Hyaluronic Acid/chemistry , Cell Line, Tumor , Brain/pathology , Cell Movement , Hyaluronan Receptors/metabolism
3.
Front Bioeng Biotechnol ; 10: 954682, 2022.
Article in English | MEDLINE | ID: mdl-35935504

ABSTRACT

Stem cells have been introduced as a promising therapy for acute and chronic wounds, including burn injuries. The effects of stem cell-based wound therapies are believed to result from the secreted bioactive molecules produced by stem cells. Therefore, treatments using stem cell-derived conditioned medium (CM) (referred to as secretome) have been proposed as an alternative option for wound care. However, safety and regulatory concerns exist due to the uncharacterized biochemical content and variability across different batches of CM samples. This study presents an alternative treatment strategy to mitigate these concerns by using fully characterized recombinant proteins identified by the CM analysis to promote pro-regenerative healing. This study analyzed the secretome profile generated from human placental stem cell (hPSC) cultures and identified nine predominantly expressed proteins (ANG-1, FGF-7, Follistatin, HGF, IL-6, Insulin, TGFß-1, uPAR, and VEGF) that are known to contribute to wound healing and angiogenesis. These proteins, referred to as s (CMFs), were used in combination to test the effects on human dermal fibroblasts (HDFs). Our results showed that CMF treatment increased the HDF growth and accelerated cell migration and wound closure, similar to stem cell and CM treatments. In addition, the CMF treatment promoted angiogenesis by enhancing new vessel formation. These findings suggest that the defined CMF identified by the CM proteomic analysis could be an effective therapeutic solution for wound healing applications. Our strategy eliminates the regulatory concerns present with stem cell-derived secretomes and could be developed as an off-the-shelf product for immediate wound care and accelerating healing.

SELECTION OF CITATIONS
SEARCH DETAIL
...