Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Immunity ; 56(11): 2570-2583.e6, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37909039

ABSTRACT

Dimeric IgA (dIgA) can move through cells via the IgA/IgM polymeric immunoglobulin receptor (PIGR), which is expressed mainly on mucosal epithelia. Here, we studied the ability of dIgA to target commonly mutated cytoplasmic oncodrivers. Mutation-specific dIgA, but not IgG, neutralized KRASG12D within ovarian carcinoma cells and expelled this oncodriver from tumor cells. dIgA binding changed endosomal trafficking of KRASG12D from accumulation in recycling endosomes to aggregation in the early/late endosomes through which dIgA transcytoses. dIgA targeting of KRASG12D abrogated tumor cell proliferation in cell culture assays. In vivo, KRASG12D-specific dIgA1 limited the growth of KRASG12D-mutated ovarian and lung carcinomas in a manner dependent on CD8+ T cells. dIgA specific for IDH1R132H reduced colon cancer growth, demonstrating effective targeting of a cytoplasmic oncodriver not associated with surface receptors. dIgA targeting of KRASG12D restricted tumor growth more effectively than small-molecule KRASG12D inhibitors, supporting the potential of this approach for the treatment of human cancers.


Subject(s)
Carcinoma , Immunoglobulin A , Humans , Immunoglobulin A/metabolism , CD8-Positive T-Lymphocytes/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Cytoplasm/metabolism
2.
Blood Adv ; 7(18): 5586-5602, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37531660

ABSTRACT

The pathogenesis of cutaneous T-cell lymphoma (CTCL) remains unclear. Using single-cell RNA or T-cell receptor (TCR) sequencing of 32 619 CD3+CD4+ and CD26+/CD7+ and 29 932 CD3+CD4+ and CD26-/CD7- lymphocytes from the peripheral blood of 7 patients with CTCL, coupled to single-cell ATAC-sequencing of 26,411 CD3+CD4+ and CD26+/CD7+ and 33 841 CD3+CD4+ and CD26-/CD7- lymphocytes, we show that tumor cells in Sézary syndrome and mycosis fungoides (MF) exhibit different phenotypes and trajectories of differentiation. When compared to MF, Sézary cells exhibit narrower repertoires of TCRs and exhibit clonal enrichment. Surprisingly, we identified ≥200 mutations in hematopoietic stem cells from multiple patients with Sézary syndrome. Mutations in key oncogenes were also present in peripheral Sézary cells, which also showed the hallmarks of recent thymic egression. Together our data suggest that CTCL arises from mutated lymphocyte progenitors that acquire TCRs in the thymus, which complete their malignant transformation in the periphery.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Mycosis Fungoides , Sezary Syndrome , Skin Neoplasms , Humans , Sezary Syndrome/genetics , Sezary Syndrome/pathology , Dipeptidyl Peptidase 4 , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Mycosis Fungoides/genetics , Mycosis Fungoides/pathology , Lymphoma, T-Cell, Cutaneous/genetics , Receptors, Antigen, T-Cell
3.
Gynecol Oncol ; 173: 114-121, 2023 06.
Article in English | MEDLINE | ID: mdl-37121178

ABSTRACT

OBJECTIVE: To demonstrate that shared antibody responses in endometriosis and endometriosis-associated ovarian cancer spontaneously antagonize malignant progression and can be leveraged to develop future immunotherapies. METHODS: B cells from cyopreserved clear cell ovarian carcinoma (CCC, n = 2), endometrioid ovarian carcinoma (EC, n = 2), and endometriomas (n = 2) were isolated, activated, and EBV-immortalized. Antibodies were purified from B cell supernatants and used for screening arrays containing most of the human proteome. Targets were prioritized based on accessibility (transmembrane or secreted proteins), expression in endometriosis and cancer, and concurrent IgA and IgG responses. We focused on antibodies targeting tumor-promoting syndecan binding protein (SDCBP) to demonstrate anti-tumor activity. Immunoblots and qPCR were performed to assess SDCBP expression in ovarian cancer and endometriosis cell lines and tumor samples. Recombinant IgG4 was generated using the variable heavy and light chains of dominant B cell receptors (BCRs) reacting against the extracellular domain of SDCBP, and used in in vivo studies in human CCC- and high-grade serous ovarian carcinoma (HGSOC)-bearing immunodeficient mice. RESULTS: Nine accessible proteins detected by both IgA and IgG were identified in all samples - including SDCBP, which is expressed in ovarian carcinomas of multiple histologies. Administration of α-SDCBP IgG4 in OVCAR3 (HGSOC), TOV21G and RMG-I (CCC) tumor-bearing mice significantly decreased tumor volume compared to control irrelevant IgG4. CONCLUSIONS: Spontaneous antibody responses exert suboptimal but measurable immune pressure against malignant progression in ovarian carcinomas. Using tumor-derived antibodies for developing novel immunotherapeutics warrants further investigation.


Subject(s)
Adenocarcinoma, Clear Cell , Carcinoma, Endometrioid , Endometriosis , Ovarian Neoplasms , Humans , Female , Animals , Mice , Ovarian Neoplasms/pathology , Apoptosis , Antibody Formation , Cell Line, Tumor , Carcinoma, Ovarian Epithelial , Carcinoma, Endometrioid/pathology , Immunoglobulin A/metabolism , Adenocarcinoma, Clear Cell/pathology , Syntenins/metabolism
4.
Mol Cancer Ther ; 21(7): 1184-1194, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35499393

ABSTRACT

Although chimeric antigen receptor (CAR)-expressing T cells have proven success in hematologic malignancies, their effectiveness in solid tumors has been largely unsuccessful thus far. We found that some olfactory receptors are expressed in a variety of solid tumors of different histologic subtypes, with a limited pattern of expression in normal tissues. Quantification of OR2H1 expression by qRT-PCR and Western blot analysis of 17 normal tissues, 82 ovarian cancers of various histologies, eight non-small cell lung cancers (NSCLCs), and 17 breast cancers demonstrated widespread OR2H1 expression in solid epithelial tumors with expression in normal human tissues limited to the testis. CAR T cells recognizing the extracellular domain of the olfactory receptor OR2H1 were generated with a targeting motif identified through the screening of a phage display library and demonstrated OR2H1-specific cytotoxic killing in vitro and in vivo, using tumor cells with spontaneous expression of variable OR2H1 levels. Importantly, recombinant OR2H1 IgG generated with the VH/VL sequences of the CAR construct specifically detected OR2H1 protein signal in 60 human lung cancers, 40 ovarian carcinomas, and 73 cholangiocarcinomas, at positivity rates comparable with mRNA expression and without OR2H1 staining in 58 normal tissues. CRISPR/Cas9-mediated ablation of OR2H1 confirmed targeting specificity of the CAR and the tumor-promoting role of OR2H1 in glucose metabolism. Therefore, T cells redirected against OR2H1-expressing tumor cells represent a promising therapy against a broad range of epithelial cancers, likely with an admissible toxicity profile.


Subject(s)
Lung Neoplasms , Neoplasms, Glandular and Epithelial , Ovarian Neoplasms , Receptors, Odorant , Female , Humans , Cell Line, Tumor , Immunotherapy, Adoptive , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Neoplasms, Glandular and Epithelial/metabolism , Ovarian Neoplasms/metabolism , Receptors, Odorant/metabolism , T-Lymphocytes
5.
Cancer Cell ; 40(5): 545-557.e13, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35427494

ABSTRACT

Despite repeated associations between T cell infiltration and outcome, human ovarian cancer remains poorly responsive to immunotherapy. We report that the hallmarks of tumor recognition in ovarian cancer-infiltrating T cells are primarily restricted to tissue-resident memory (TRM) cells. Single-cell RNA/TCR/ATAC sequencing of 83,454 CD3+CD8+CD103+CD69+ TRM cells and immunohistochemistry of 122 high-grade serous ovarian cancers shows that only progenitor (TCF1low) tissue-resident T cells (TRMstem cells), but not recirculating TCF1+ T cells, predict ovarian cancer outcome. TRMstem cells arise from transitional recirculating T cells, which depends on antigen affinity/persistence, resulting in oligoclonal, trogocytic, effector lymphocytes that eventually become exhausted. Therefore, ovarian cancer is indeed an immunogenic disease, but that depends on ∼13% of CD8+ tumor-infiltrating T cells (∼3% of CD8+ clonotypes), which are primed against high-affinity antigens and maintain waves of effector TRM-like cells. Our results define the signature of relevant tumor-reactive T cells in human ovarian cancer, which could be applicable to other tumors with unideal mutational burden.


Subject(s)
Immunologic Memory , Ovarian Neoplasms , CD8-Positive T-Lymphocytes , Female , Humans , Lymphocytes, Tumor-Infiltrating , Memory T Cells
6.
Cancer Discov ; 12(5): 1294-1313, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35247891

ABSTRACT

ABSTRACT: Cutaneous T-cell lymphoma (CTCL) is a rare cancer of skin-homing T cells. A subgroup of patients develops large cell transformation with rapid progression to an aggressive lymphoma. Here, we investigated the transformed CTCL (tCTCL) tumor ecosystem using integrative multiomics spanning whole-exome sequencing (WES), single-cell RNA sequencing, and immune profiling in a unique cohort of 56 patients. WES of 70 skin biopsies showed high tumor mutation burden, UV signatures that are prognostic for survival, exome-based driver events, and most recurrently mutated pathways in tCTCL. Single-cell profiling of 16 tCTCL skin biopsies identified a core oncogenic program with metabolic reprogramming toward oxidative phosphorylation (OXPHOS), cellular plasticity, upregulation of MYC and E2F activities, and downregulation of MHC I suggestive of immune escape. Pharmacologic perturbation using OXPHOS and MYC inhibitors demonstrated potent antitumor activities, whereas immune profiling provided in situ evidence of intercellular communications between malignant T cells expressing macrophage migration inhibitory factor and macrophages and B cells expressing CD74. SIGNIFICANCE: Our study contributes a key resource to the community with the largest collection of tCTCL biopsies that are difficult to obtain. The multiomics data herein provide the first comprehensive compendium of genomic alterations in tCTCL and identify potential prognostic signatures and novel therapeutic targets for an incurable T-cell lymphoma. This article is highlighted in the In This Issue feature, p. 1171.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Cell Transformation, Neoplastic , Ecosystem , Genomics , Humans , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
7.
Immunity ; 55(1): 115-128.e9, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021053

ABSTRACT

The immune checkpoint receptor PD-1 on T follicular helper (Tfh) cells promotes Tfh:B cell interactions and appropriate positioning within tissues. Here, we examined the impact of regulation of PD-1 expression by the genomic organizer SATB1 on Tfh cell differentiation. Vaccination of CD4CreSatb1f/f mice enriched for antigen-specific Tfh cells, and TGF-ß-mediated repression of SATB1 enhanced Tfh differentiation of human T cells. Mechanistically, high Icos expression in Satb1-/- CD4+ T cells promoted Tfh cell differentiation by preventing T follicular regulatory cell skewing and resulted in increased isotype-switched B cell responses in vivo. Ovarian tumors in CD4CreSatb1f/f mice accumulated tumor antigen-specific, LIGHT+CXCL13+IL-21+ Tfh cells and tertiary lymphoid structures (TLS). TLS formation decreased tumor growth in a CD4+ T cell and CXCL13-dependent manner. The transfer of Tfh cells, but not naive CD4+ T cells, induced TLS at tumor beds and decreased tumor growth. Thus, TGF-ß-mediated silencing of Satb1 licenses Tfh cell differentiation, providing insight into the genesis of TLS within tumors.


Subject(s)
Germinal Center/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Matrix Attachment Region Binding Proteins/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Tertiary Lymphoid Structures/immunology , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation , Gene Expression Regulation , Gene Silencing , Genotype , Matrix Attachment Region Binding Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Transforming Growth Factor beta/genetics
8.
Eur J Hum Genet ; 30(4): 465-473, 2022 04.
Article in English | MEDLINE | ID: mdl-34803163

ABSTRACT

Genome wide-association studies (GWAS) have established over 400 breast cancer risk loci defined by common single nucleotide polymorphisms (SNPs), including several associated with estrogen-receptor (ER)-negative disease. Most of these loci have not been studied systematically and the mechanistic underpinnings of risk are largely unknown. Here we explored the landscape of genomic features at an ER-negative breast cancer susceptibility locus at chromosome 2p23.2 and assessed the functionality of 81 SNPs with strong evidence of association from previous fine mapping. Five candidate regulatory regions containing risk-associated SNPs were identified. Regulatory Region 1 in the first intron of WDR43 contains SNP rs4407214, which showed allele-specific interaction with the transcription factor USF1 in in vitro assays. CRISPR-mediated disruption of Regulatory Region 1 led to expression changes in the neighboring PLB1 gene, suggesting that the region acts as a distal enhancer. Regulatory Regions 2, 4, and 5 did not provide sufficient evidence for functionality in in silico and experimental analyses. Two SNPs (rs11680458 and rs1131880) in Regulatory Region 3, mapping to the seed region for miRNA-recognition sites in the 3' untranslated region of WDR43, showed allele-specific effects of ectopic expression of miR-376 on WDR43 expression levels. Taken together, our data suggest that risk of ER-negative breast cancer associated with the 2p23.2 locus is likely driven by a combinatorial effect on the regulation of WDR43 and PLB1.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Breast Neoplasms/genetics , Estrogens , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide
9.
Cancer Res ; 82(5): 859-871, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34949671

ABSTRACT

Recent studies suggest that B cells could play an important role in the tumor microenvironment. However, the role of humoral responses in endometrial cancer remains insufficiently investigated. Using a cohort of 107 patients with different histological subtypes of endometrial carcinoma, we evaluated the role of coordinated humoral and cellular adaptive immune responses in endometrial cancer. Concomitant accumulation of T, B, and plasma cells at tumor beds predicted better survival. However, only B-cell markers corresponded with prolonged survival specifically in high-grade endometrioid type and serous tumors. Immune protection was associated with class-switched IgA and, to a lesser extent, IgG. Expressions of polymeric immunoglobulin receptor (pIgR) by tumor cells and its occupancy by IgA were superior predictors of outcome and correlated with defects in methyl-directed DNA mismatch repair. Mechanistically, pIgR-dependent, antigen-independent IgA occupancy drove activation of inflammatory pathways associated with IFN and TNF signaling in tumor cells, along with apoptotic and endoplasmic reticulum stress pathways, while thwarting DNA repair mechanisms. Together, these findings suggest that coordinated humoral and cellular immune responses, characterized by IgA:pIgR interactions in tumor cells, determine the progression of human endometrial cancer as well as the potential for effective immunotherapies. SIGNIFICANCE: This study provides new insights into the crucial role of humoral immunity in human endometrial cancer, providing a rationale for designing novel immunotherapies against this prevalent malignancy. See related commentary by Osorio and Zamarin, p. 766.


Subject(s)
Endometrial Neoplasms , Receptors, Polymeric Immunoglobulin , B-Lymphocytes/metabolism , Endometrial Neoplasms/pathology , Female , Humans , Immunity, Humoral , Immunoglobulin A/metabolism , Receptors, Polymeric Immunoglobulin/genetics , Receptors, Polymeric Immunoglobulin/metabolism , Tumor Microenvironment
10.
Nature ; 591(7850): 464-470, 2021 03.
Article in English | MEDLINE | ID: mdl-33536615

ABSTRACT

Most ovarian cancers are infiltrated by prognostically relevant activated T cells1-3, yet exhibit low response rates to immune checkpoint inhibitors4. Memory B cell and plasma cell infiltrates have previously been associated with better outcomes in ovarian cancer5,6, but the nature and functional relevance of these responses are controversial. Here, using 3 independent cohorts that in total comprise 534 patients with high-grade serous ovarian cancer, we show that robust, protective humoral responses are dominated by the production of polyclonal IgA, which binds to polymeric IgA receptors that are universally expressed on ovarian cancer cells. Notably, tumour B-cell-derived IgA redirects myeloid cells against extracellular oncogenic drivers, which causes tumour cell death. In addition, IgA transcytosis through malignant epithelial cells elicits transcriptional changes that antagonize the RAS pathway and sensitize tumour cells to cytolytic killing by T cells, which also contributes to hindering malignant progression. Thus, tumour-antigen-specific and -antigen-independent IgA responses antagonize the growth of ovarian cancer by governing coordinated tumour cell, T cell and B cell responses. These findings provide a platform for identifying targets that are spontaneously recognized by intratumoural B-cell-derived antibodies, and suggest that immunotherapies that augment B cell responses may be more effective than approaches that focus on T cells, particularly for malignancies that are resistant to checkpoint inhibitors.


Subject(s)
Antigens, Neoplasm/immunology , Immunoglobulin A/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , Transcytosis , Antibody Specificity , Antigens, CD/immunology , Cell Line , Disease Progression , Female , Humans , Ovarian Neoplasms/prevention & control , Receptors, Fc/immunology , Signaling Lymphocytic Activation Molecule Family/immunology , Transcytosis/immunology , Tumor Microenvironment/immunology
11.
J Clin Invest ; 131(3)2021 02 01.
Article in English | MEDLINE | ID: mdl-33270606

ABSTRACT

Cutaneous T cell lymphoma (CTCL) has a poorly understood etiology and no known cure. Using conditional knockout mice, we found that ablation of the genomic organizer special AT-rich sequence-binding protein 1 (Satb1) caused malignant transformation of mature, skin-homing, Notch-activated CD4+ and CD8+ T cells into progressively fatal lymphoma. Mechanistically, Satb1 restrained Stat5 phosphorylation and the expression of skin-homing chemokine receptors in mature T cells. Notably, methyltransferase-dependent epigenetic repression of SATB1 was universally found in human Sézary syndrome, but not in other peripheral T cell malignancies. H3K27 and H3K9 trimethylation occluded the SATB1 promoter in Sézary cells, while inhibition of SUV39H1/2 methyltransferases (unlike EZH2 inhibition) restored protective SATB1 expression and selectively abrogated the growth of primary Sézary cells more effectively than romidepsin. Therefore, inhibition of methyltransferases that silence SATB1 could address an unmet need for patients with mycosis fungoides/Sézary syndrome, a set of incurable diseases.


Subject(s)
Enzyme Inhibitors/pharmacology , Matrix Attachment Region Binding Proteins/metabolism , Methyltransferases/antagonists & inhibitors , Neoplasm Proteins , Sezary Syndrome/drug therapy , Skin Neoplasms/drug therapy , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Humans , Methyltransferases/metabolism , Mice , Mice, Transgenic , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Sezary Syndrome/metabolism , Sezary Syndrome/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
12.
Science ; 369(6506): 942-949, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32820120

ABSTRACT

Gamma delta (γδ) T cells infiltrate most human tumors, but current immunotherapies fail to exploit their in situ major histocompatibility complex-independent tumoricidal potential. Activation of γδ T cells can be elicited by butyrophilin and butyrophilin-like molecules that are structurally similar to the immunosuppressive B7 family members, yet how they regulate and coordinate αß and γδ T cell responses remains unknown. Here, we report that the butyrophilin BTN3A1 inhibits tumor-reactive αß T cell receptor activation by preventing segregation of N-glycosylated CD45 from the immune synapse. Notably, CD277-specific antibodies elicit coordinated restoration of αß T cell effector activity and BTN2A1-dependent γδ lymphocyte cytotoxicity against BTN3A1+ cancer cells, abrogating malignant progression. Targeting BTN3A1 therefore orchestrates cooperative killing of established tumors by αß and γδ T cells and may present a treatment strategy for tumors resistant to existing immunotherapies.


Subject(s)
Antigens, CD/immunology , Butyrophilins/antagonists & inhibitors , Butyrophilins/immunology , Intraepithelial Lymphocytes/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , Animals , Antibodies, Monoclonal/therapeutic use , Antigens, CD/genetics , Butyrophilins/genetics , Female , Humans , Immunotherapy/methods , Mice , Mice, Transgenic , Receptors, Antigen, T-Cell, alpha-beta/immunology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Oncotarget ; 8(8): 12540-12541, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28177912
14.
J Bacteriol ; 198(3): 394-409, 2016 02 01.
Article in English | MEDLINE | ID: mdl-26527649

ABSTRACT

UNLABELLED: Global regulator of virulence A (GrvA) is a ToxR-family transcriptional regulator that activates locus of enterocyte effacement (LEE)-dependent adherence in enterohemorrhagic Escherichia coli (EHEC). LEE activation by GrvA requires the Rcs phosphorelay response regulator RcsB and is sensitive to physiologically relevant concentrations of bicarbonate, a known stimulant of virulence systems in intestinal pathogens. This study determines the genomic scale of GrvA-dependent regulation and uncovers details of the molecular mechanism underlying GrvA-dependent regulation of pathogenic mechanisms in EHEC. In a grvA-null background of EHEC strain TW14359, RNA sequencing analysis revealed the altered expression of over 700 genes, including the downregulation of LEE- and non-LEE-encoded effectors and the upregulation of genes for glutamate-dependent acid resistance (GDAR). Upregulation of GDAR genes corresponded with a marked increase in acid resistance. GrvA-dependent regulation of GDAR and the LEE required gadE, the central activator of GDAR genes and a direct repressor of the LEE. Control of gadE by GrvA was further determined to occur through downregulation of the gadE activator GadW. This interaction of GrvA with GadW-GadE represses the acid resistance phenotype, while it concomitantly activates the LEE-dependent adherence and secretion of immune subversion effectors. The results of this study significantly broaden the scope of GrvA-dependent regulation and its role in EHEC pathogenesis. IMPORTANCE: Enterohemorrhagic Escherichia coli (EHEC) is an intestinal human pathogen causing acute hemorrhagic colitis and life-threatening hemolytic-uremic syndrome. For successful transmission and gut colonization, EHEC relies on the glutamate-dependent acid resistance (GDAR) system and a type III secretion apparatus, encoded on the LEE pathogenicity island. This study investigates the mechanism whereby the DNA-binding regulator GrvA coordinates activation of the LEE with repression of GDAR. Investigating how these systems are regulated leads to an understanding of pathogenic behavior and novel strategies aimed at disease prevention and control.


Subject(s)
Enterohemorrhagic Escherichia coli/metabolism , Enterohemorrhagic Escherichia coli/pathogenicity , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Transcription Factors/metabolism , Bacterial Adhesion/physiology , Enterohemorrhagic Escherichia coli/genetics , Escherichia coli Proteins/genetics , Glutamic Acid/metabolism , HT29 Cells , Humans , Hydrogen-Ion Concentration , Transcription Factors/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...