Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Protein Sci ; 32(3): e4586, 2023 03.
Article in English | MEDLINE | ID: mdl-36721353

ABSTRACT

In addition to their membrane-bound chlorophyll a/c light-harvesting antenna, the cryptophyte algae have evolved a unique phycobiliprotein antenna system located in the thylakoid lumen. The basic unit of this antenna consists of two copies of an αß protomer where the α and ß subunits scaffold different combinations of a limited number of linear tetrapyrrole chromophores. While the ß subunit is highly conserved, encoded by a single plastid gene, the nuclear-encoded α subunits have evolved diversified multigene families. It is still unclear how this sequence diversity results in the spectral diversity of the mature proteins. By careful examination of three newly determined crystal structures in comparison with three previously obtained, we show how the α subunit amino acid sequences control chromophore conformations and hence spectral properties even when the chromophores are identical. Previously we have shown that α subunits control the quaternary structure of the mature αß.αß complex (either open or closed), however, each species appeared to only harbor a single quaternary form. Here we show that species of the Hemiselmis genus contain expressed α subunit genes that encode both distinct quaternary structures. Finally, we have discovered a common single-copy gene (expressed into protein) consisting of tandem copies of a small α subunit that could potentially scaffold pairs of light harvesting units. Together, our results show how the diversity of the multigene α subunit family produces a range of mature cryptophyte antenna proteins with differing spectral properties, and the potential for minor forms that could contribute to acclimation to varying light regimes.


Subject(s)
Cryptophyta , Molecular Structure , Chlorophyll A/metabolism , Models, Molecular , Amino Acid Sequence , Cryptophyta/metabolism
2.
J Biol Chem ; 298(7): 102119, 2022 07.
Article in English | MEDLINE | ID: mdl-35691342

ABSTRACT

The metal-dependent M17 aminopeptidases are conserved throughout all kingdoms of life. This large enzyme family is characterized by a conserved binuclear metal center and a distinctive homohexameric arrangement. Recently, we showed that hexamer formation in Plasmodium M17 aminopeptidases was controlled by the metal ion environment, although the functional necessity for hexamer formation is still unclear. To further understand the mechanistic role of the hexameric assembly, here we undertook an investigation of the structure and dynamics of the M17 aminopeptidase from Plasmodium falciparum, PfA-M17. We describe a novel structure of PfA-M17, which shows that the active sites of each trimer are linked by a dynamic loop, and loop movement is coupled with a drastic rearrangement of the binuclear metal center and substrate-binding pocket, rendering the protein inactive. Molecular dynamics simulations and biochemical analyses of PfA-M17 variants demonstrated that this rearrangement is inherent to PfA-M17, and that the transition between the active and inactive states is metal dependent and part of a dynamic regulatory mechanism. Key to the mechanism is a remodeling of the binuclear metal center, which occurs in response to a signal from the neighboring active site and serves to moderate the rate of proteolysis under different environmental conditions. In conclusion, this work identifies a precise mechanism by which oligomerization contributes to PfA-M17 function. Furthermore, it describes a novel role for metal cofactors in the regulation of enzymes, with implications for the wide range of metalloenzymes that operate via a two-metal ion catalytic center, including DNA processing enzymes and metalloproteases.


Subject(s)
Aminopeptidases , Plasmodium falciparum/enzymology , Aminopeptidases/chemistry , Aminopeptidases/metabolism , Catalytic Domain , Metals/metabolism , Plasmodium falciparum/metabolism
3.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 7): 1136-1138, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32695467

ABSTRACT

Exceptionally large crystals of posnjakite, Cu4SO4(OH)6(H2O), formed during corrosion of a Swagelock(tm) Snubber copper gasket within the MX1 beamline at the ANSTO-Melbourne, Australian Synchrotron. The crystal structure was solved using synchrotron radiation to R 1 = 0.029 and revealed a structure based upon [Cu4(OH)6(H2O)O] sheets, which contain Jahn-Teller-distorted Cu octa-hedra. The sulfate tetra-hedra are bonded to one side of the sheet via corner sharing and linked to successive sheets via extensive hydrogen bonds. The sulfate tetra-hedra are split and rotated, which enables additional hydrogen bonds.

4.
PLoS One ; 13(1): e0191610, 2018.
Article in English | MEDLINE | ID: mdl-29352301

ABSTRACT

With new strains of Acinetobacter baumannii undergoing genomic analysis, it has been possible to define regions of genomic plasticity (RGPs), encoding specific adaptive elements. For a selected RGP from a community-derived isolate of A. baumannii, we outline sequences compatible with biosynthetic machinery of surface polysaccharides, specifically enzymes utilized in the dehydration and conversion of UDP-N-acetyl-D-glucosamine (UDP-D-GlcNAc). We have determined the crystal structure of one of these, the epimerase Ab-WbjB. This dehydratase belongs to the 'extended' short-chain dehydrogenase/reductase (SDR) family, related in fold to previously characterised enzymes CapE and FlaA1. Our 2.65Å resolution structure of Ab-WbjB shows a hexamer, organised into a trimer of chain pairs, with coenzyme NADP+ occupying each chain. Specific active-site interactions between each coenzyme and a lysine quaternary group of a neighbouring chain interconnect adjacent dimers, so stabilising the hexameric form. We show UDP-GlcNAc to be a specific substrate for Ab-WbjB, with binding evident by ITC (Ka = 0.23 µmol-1). The sequence of Ab-WbjB shows variation from the consensus active-site motifs of many SDR enzymes, demonstrating a likely catalytic role for a specific threonine sidechain (as an alternative to tyrosine) in the canonical active site chemistry of these epimerases.


Subject(s)
Acinetobacter baumannii/enzymology , Bacterial Proteins/chemistry , Carbohydrate Epimerases/chemistry , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Catalytic Domain , Crystallography, X-Ray , Humans , Models, Molecular , Polysaccharides, Bacterial/biosynthesis , Protein Conformation , Protein Domains , Protein Structure, Quaternary , Sequence Homology, Amino Acid , Static Electricity , Structural Homology, Protein
5.
Biochem J ; 473(18): 2763-82, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27364155

ABSTRACT

Ezrin is a member of the ERM (ezrin-radixin-moesin) family of proteins that have been conserved through metazoan evolution. These proteins have dormant and active forms, where the latter links the actin cytoskeleton to membranes. ERM proteins have three domains: an N-terminal FERM [band Four-point-one (4.1) ERM] domain comprising three subdomains (F1, F2, and F3); a helical domain; and a C-terminal actin-binding domain. In the dormant form, FERM and C-terminal domains form a stable complex. We have determined crystal structures of the active FERM domain and the dormant FERM:C-terminal domain complex of human ezrin. We observe a bistable array of phenylalanine residues in the core of subdomain F3 that is mobile in the active form and locked in the dormant form. As subdomain F3 is pivotal in binding membrane proteins and phospholipids, these transitions may facilitate activation and signaling. Full-length ezrin forms stable monomers and dimers. We used small-angle X-ray scattering to determine the solution structures of these species. As expected, the monomer shows a globular domain with a protruding helical coiled coil. The dimer shows an elongated dumbbell structure that is twice as long as the monomer. By aligning ERM sequences spanning metazoan evolution, we show that the central helical region is conserved, preserving the heptad repeat. Using this, we have built a dimer model where each monomer forms half of an elongated antiparallel coiled coil with domain-swapped FERM:C-terminal domain complexes at each end. The model suggests that ERM dimers may bind to actin in a parallel fashion.


Subject(s)
Cytoskeletal Proteins/chemistry , Circular Dichroism , Crystallography, X-Ray , Dimerization , Protein Conformation
6.
Int J Mol Sci ; 17(4): 446, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-27023527

ABSTRACT

Kynurenine aminotransferase II (KAT-II) is a 47 kDa pyridoxal phosphate (PLP)-dependent enzyme, active as a homodimer, which catalyses the transamination of the amino acids kynurenine (KYN) and 3-hydroxykynurenine (3-HK) in the tryptophan pathway, and is responsible for producing metabolites that lead to kynurenic acid (KYNA), which is implicated in several neurological diseases such as schizophrenia. In order to fully describe the role of KAT-II in the pathobiology of schizophrenia and other brain disorders, the crystal structure of full-length PLP-form hKAT-II was determined at 1.83 Å resolution, the highest available. The electron density of the active site reveals an aldimine linkage between PLP and Lys263, as well as the active site residues, which characterize the fold-type I PLP-dependent enzymes.


Subject(s)
Transaminases/chemistry , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Humans , Hydrogen Bonding , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Transaminases/genetics , Transaminases/metabolism
7.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 8): 1094-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26249706

ABSTRACT

The genomes uncoupled 4 (GUN4) protein stimulates chlorophyll biosynthesis by increasing the activity of Mg-chelatase, the enzyme that inserts magnesium into protoporphyrin IX (PPIX) in the chlorophyll biosynthesis pathway. One of the roles of GUN4 is in binding PPIX and Mg-PPIX. In eukaryotes, GUN4 also participates in plastid-to-nucleus signalling, although the mechanism for this is unclear. Here, the first crystal structure of a eukaryotic GUN4, from Chlamydomonas reinhardtii, is presented. The structure is in broad agreement with those of previously solved cyanobacterial structures. Most interestingly, conformational divergence is restricted to several loops which cover the porphyrin-binding cleft. The conformational dynamics suggested by this ensemble of structures lend support to the understanding of how GUN4 binds PPIX or Mg-PPIX.


Subject(s)
Algal Proteins/chemistry , Chlamydomonas reinhardtii/chemistry , Protoporphyrins/chemistry , Recombinant Fusion Proteins/chemistry , Algal Proteins/genetics , Amino Acid Sequence , Base Sequence , Binding Sites , Chlamydomonas reinhardtii/genetics , Cloning, Molecular , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Sequence Alignment
8.
J Synchrotron Radiat ; 22(1): 187-90, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25537608

ABSTRACT

MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented.

9.
Dev Cell ; 31(4): 405-19, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25453557

ABSTRACT

Caveolae are cell-surface membrane invaginations that play critical roles in cellular processes including signaling and membrane homeostasis. The cavin proteins, in cooperation with caveolins, are essential for caveola formation. Here we show that a minimal N-terminal domain of the cavins, termed HR1, is required and sufficient for their homo- and hetero-oligomerization. Crystal structures of the mouse cavin1 and zebrafish cavin4a HR1 domains reveal highly conserved trimeric coiled-coil architectures, with intersubunit interactions that determine the specificity of cavin-cavin interactions. The HR1 domain contains a basic surface patch that interacts with polyphosphoinositides and coordinates with additional membrane-binding sites within the cavin C terminus to facilitate membrane association and remodeling. Electron microscopy of purified cavins reveals the existence of large assemblies, composed of a repeating rod-like structural element, and we propose that these structures polymerize through membrane-coupled interactions to form the unique striations observed on the surface of caveolae in vivo.


Subject(s)
Caveolae/chemistry , Caveolae/metabolism , Caveolins/chemistry , Caveolins/metabolism , Cytoplasm/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Caveolae/ultrastructure , Crystallography, X-Ray , Cytoplasm/chemistry , Cytoplasm/ultrastructure , Membrane Proteins/metabolism , Microscopy, Electron , Molecular Sequence Data , Protein Structure, Quaternary , Signal Transduction/physiology , Zebrafish/metabolism
10.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 10): 1318-23, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25286932

ABSTRACT

Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Šresolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. The enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access.


Subject(s)
Acinetobacter baumannii/enzymology , Bacterial Proteins/chemistry , Fatty Acid Synthases/chemistry , NADH, NADPH Oxidoreductases/chemistry , Acinetobacter baumannii/genetics , Amino Acid Sequence , Apoenzymes/chemistry , Catalytic Domain , Crystallography, X-Ray , Genome, Bacterial , Genomic Islands , Models, Molecular , Molecular Sequence Data
11.
Proc Natl Acad Sci U S A ; 111(26): E2666-75, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24979784

ABSTRACT

Observation of coherent oscillations in the 2D electronic spectra (2D ES) of photosynthetic proteins has led researchers to ask whether nontrivial quantum phenomena are biologically significant. Coherent oscillations have been reported for the soluble light-harvesting phycobiliprotein (PBP) antenna isolated from cryptophyte algae. To probe the link between spectral properties and protein structure, we determined crystal structures of three PBP light-harvesting complexes isolated from different species. Each PBP is a dimer of αß subunits in which the structure of the αß monomer is conserved. However, we discovered two dramatically distinct quaternary conformations, one of which is specific to the genus Hemiselmis. Because of steric effects emerging from the insertion of a single amino acid, the two αß monomers are rotated by ∼73° to an "open" configuration in contrast to the "closed" configuration of other cryptophyte PBPs. This structural change is significant for the light-harvesting function because it disrupts the strong excitonic coupling between two central chromophores in the closed form. The 2D ES show marked cross-peak oscillations assigned to electronic and vibrational coherences in the closed-form PC645. However, such features appear to be reduced, or perhaps absent, in the open structures. Thus cryptophytes have evolved a structural switch controlled by an amino acid insertion to modulate excitonic interactions and therefore the mechanisms used for light harvesting.


Subject(s)
Cryptophyta/genetics , Evolution, Molecular , Models, Molecular , Mutagenesis, Insertional/genetics , Phycobiliproteins/genetics , Amino Acid Sequence , Base Sequence , Crystallography, X-Ray , Dimerization , Molecular Sequence Data , Phycobiliproteins/chemistry , Protein Conformation , Sequence Analysis, DNA , Spectrum Analysis
12.
Biochim Biophys Acta ; 1838(2): 643-57, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23732235

ABSTRACT

The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cytoskeletal Proteins/metabolism , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Animals , Humans
13.
J Biol Chem ; 288(21): 15269-79, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23482564

ABSTRACT

Human group IIA secreted phospholipase A2 (hGIIA) promotes tumor growth and inflammation and can act independently of its well described catalytic lipase activity via an alternative poorly understood signaling pathway. With six chemically diverse inhibitors we show that it is possible to selectively inhibit hGIIA signaling over catalysis, and x-ray crystal structures illustrate that signaling involves a pharmacologically distinct surface to the catalytic site. We demonstrate in rheumatoid fibroblast-like synoviocytes that non-catalytic signaling is associated with rapid internalization of the enzyme and colocalization with vimentin. Trafficking of exogenous hGIIA was monitored with immunofluorescence studies, which revealed that vimentin localization is disrupted by inhibitors of signaling that belong to a rare class of small molecule inhibitors that modulate protein-protein interactions. This study provides structural and pharmacological evidence for an association between vimentin, hGIIA, and arachidonic acid metabolism in synovial inflammation, avenues for selective interrogation of hGIIA signaling, and new strategies for therapeutic hGIIA inhibitor design.


Subject(s)
Arachidonic Acid/metabolism , Arthritis, Rheumatoid/metabolism , Enzyme Inhibitors/pharmacology , Group II Phospholipases A2/antagonists & inhibitors , Signal Transduction/drug effects , Synovial Membrane/metabolism , Vimentin/metabolism , Animals , Arachidonic Acid/genetics , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , CHO Cells , Cricetinae , Cricetulus , Drug Design , Enzyme Inhibitors/therapeutic use , Female , Group II Phospholipases A2/genetics , Group II Phospholipases A2/metabolism , Humans , Male , Signal Transduction/genetics , Synovial Membrane/pathology , Vimentin/genetics
14.
PLoS One ; 8(1): e52934, 2013.
Article in English | MEDLINE | ID: mdl-23349695

ABSTRACT

Mobile gene cassettes captured within integron arrays encompass a vast and diverse pool of genetic novelty. In most cases, functional annotation of gene cassettes directly recovered by cassette-PCR is obscured by their characteristically high sequence novelty. This inhibits identification of those specific functions or biological features that might constitute preferential factors for lateral gene transfer via the integron system. A structural genomics approach incorporating x-ray crystallography has been utilised on a selection of cassettes to investigate evolutionary relationships hidden at the sequence level. Gene cassettes were accessed from marine sediments (pristine and contaminated sites), as well as a range of Vibrio spp. We present six crystal structures, a remarkably high proportion of our survey of soluble proteins, which were found to possess novel folds. These entirely new structures are diverse, encompassing all-α, α+ß and α/ß fold classes, and many contain clear binding pocket features for small molecule substrates. The new structures emphasise the large repertoire of protein families encoded within the integron cassette metagenome and which remain to be characterised. Oligomeric association is a notable recurring property common to these new integron-derived proteins. In some cases, the protein-protein contact sites utilised in homomeric assembly could instead form suitable contact points for heterogeneous regulator/activator proteins or domains. Such functional features are ideal for a flexible molecular componentry needed to ensure responsive and adaptive bacterial functions.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genes, Bacterial/genetics , Integrons/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Binding Sites , Crystallography, X-Ray , Gene Transfer, Horizontal/genetics , Metagenome/genetics , Models, Molecular , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Protein Binding , Protein Structure, Secondary , Vibrio cholerae/genetics , Vibrio cholerae/metabolism
15.
Environ Microbiol ; 13(8): 2232-49, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21477108

ABSTRACT

Archaea are abundant in permanently cold environments. The Antarctic methanogen, Methanococcoides burtonii, has proven an excellent model for studying molecular mechanisms of cold adaptation. Methanococcoides burtonii contains three group II chaperonins that diverged prior to its closest orthologues from mesophilic Methanosarcina spp. The relative abundance of the three chaperonins shows little dependence on organism growth temperature, except at the highest temperatures, where the most thermally stable chaperonin increases in abundance. In vitro and in vivo, the M. burtonii chaperonins are predominantly monomeric, with only 23-33% oligomeric, thereby differing from other archaea where an oligomeric ring form is dominant. The crystal structure of an N-terminally truncated chaperonin reveals a monomeric protein with a fully open nucleotide binding site. When compared with closed state group II chaperonin structures, a large-scale ≈ 30° rotation between the equatorial and intermediate domains is observed resulting in an open nucleotide binding site. This is analogous to the transition observed between open and closed states of group I chaperonins but contrasts with recent archaeal group II chaperonin open state ring structures. The predominance of monomeric form and the ability to adopt a fully open nucleotide site appear to be unique features of the M. burtonii group II chaperonins.


Subject(s)
Group II Chaperonins/chemistry , Methanosarcinaceae/chemistry , Models, Molecular , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Antarctic Regions , Group II Chaperonins/genetics , Group II Chaperonins/metabolism , Methanosarcinaceae/enzymology , Methanosarcinaceae/genetics , Molecular Sequence Data , Phylogeny , Protein Stability , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Temperature
16.
PLoS One ; 6(3): e16934, 2011 Mar 03.
Article in English | MEDLINE | ID: mdl-21390267

ABSTRACT

BACKGROUND: The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. METHODOLOGY/PRINCIPAL FINDINGS: We report the 1.8 Å crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. CONCLUSIONS/SIGNIFICANCE: Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.


Subject(s)
Bacterial Proteins/chemistry , Genes, Bacterial/genetics , Integrons/genetics , Pharmaceutical Preparations/metabolism , Vibrio cholerae/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Cations , Conserved Sequence/genetics , Crystallography, X-Ray , Ligands , Molecular Sequence Data , Phylogeny , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Structural Homology, Protein
17.
FEBS J ; 278(10): 1662-75, 2011 May.
Article in English | MEDLINE | ID: mdl-21388519

ABSTRACT

It has been reported that a human chloride intracellular channel (CLIC) protein, CLIC4, translocates to the nucleus in response to cellular stress, facilitated by a putative CLIC4 nuclear localization signal (NLS). The CLIC4 NLS adopts an α-helical structure in the native CLIC4 fold. It is proposed that CLIC4 is transported to the nucleus via the classical nuclear import pathway after binding the import receptor, importin-α. In this study, we have determined the X-ray crystal structure of a truncated form of importin-α lacking the importin-ß binding domain, bound to a CLIC4 NLS peptide. The NLS peptide binds to the major binding site in an extended conformation similar to that observed for the classical simian virus 40 large T-antigen NLS. A Tyr residue within the CLIC4 NLS makes surprisingly favourable interactions by forming side-chain hydrogen bonds to the importin-α backbone. This structural evidence supports the hypothesis that CLIC4 translocation to the nucleus is governed by the importin-α nuclear import pathway, provided that CLIC4 can undergo a conformational rearrangement that exposes the NLS in an extended conformation.


Subject(s)
Chloride Channels/metabolism , alpha Karyopherins/metabolism , Active Transport, Cell Nucleus , Animals , Antigens, Viral, Tumor/metabolism , Binding Sites , Crystallography, X-Ray , Humans , Mice , Nuclear Localization Signals/metabolism , Protein Conformation , Protein Structure, Secondary
18.
Environ Microbiol ; 13(8): 2039-55, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21108724

ABSTRACT

RNA polymerase in Archaea is composed of 11 or 12 subunits - 9 or 10 that form the core, and a heterodimer formed from subunits E and F that associates with the core and can interact with general transcription factors and facilitate transcription. While the ability of the heterodimer to bind RNA has been demonstrated, it has not been determined whether it can recognize specific RNA targets. In this study we used a recombinant archaeal MbRpoE/F to capture cellular mRNA in vitro and a microarray to determine which transcripts it specifically binds. Only transcripts for 117 genes (4% of the total) representing 48 regions of the genome were bound by MbRpoE/F. The transcripts represented important genes in a number of functional classes: methanogenesis, cofactor biosynthesis, nucleotide metabolism, transcription, translation, import/export. The arrangement and characteristics (e.g. codon and amino acid usage) of genes relative to the putative origin of replication indicate that MbRpoE/F preferentially binds to mRNA of genes whose expression may be important for cellular fitness. We also compared the biophysical properties of RpoE/F from M. burtonii and Methanocaldococcus jannaschii, demonstrating a 50°C difference in their apparent melting temperatures. By using MbRpoE/F to capture and characterize cellular RNA we have identified a previously unknown functional property of the MbRpoE/F heterodimer.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Methanosarcinaceae/enzymology , Methanosarcinaceae/genetics , RNA, Messenger/metabolism , Antarctic Regions , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Methanosarcinaceae/metabolism , Protein Binding , Protein Biosynthesis , RNA, Messenger/genetics , Recombinant Proteins/metabolism
19.
J Biol Chem ; 285(18): 13550-60, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20181955

ABSTRACT

In animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex. AtSerpin1 is an Arabidopsis protease inhibitor that is expressed ubiquitously throughout the plant. The x-ray crystal structure of recombinant AtSerpin1 in its native stressed conformation was determined at 2.2 A. The electrostatic surface potential below the RCL was found to be highly positive, whereas the breach region critical for RCL insertion is an unusually open structure. AtSerpin1 accumulates in plants as a full-length and a cleaved form. Fractionation of seedling extracts by nonreducing SDS-PAGE revealed the presence of an additional slower migrating complex that was absent when leaves were treated with the specific cysteine protease inhibitor L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane. Significantly, RESPONSIVE TO DESICCATION-21 (RD21) was the major protease labeled with the L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane derivative DCG-04 in wild type extracts but not in extracts of mutant plants constitutively overexpressing AtSerpin1, indicating competition. Fractionation by nonreducing SDS-PAGE followed by immunoblotting with RD21-specific antibody revealed that the protease accumulated both as a free enzyme and in a complex with AtSerpin1. Importantly, both RD21 and AtSerpin1 knock-out mutants lacked the serpin-protease complex. The results establish that the major Arabidopsis plant serpin interacts with RD21. This is the first report of the structure and in vivo interaction of a plant serpin with its target protease.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , Cysteine Proteases/chemistry , Peptide Hydrolases/chemistry , Serpins/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Crystallography, X-Ray , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Mutation , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Plants, Genetically Modified , Protein Structure, Quaternary , Seedlings/chemistry , Seedlings/genetics , Seedlings/metabolism , Serpins/genetics , Serpins/metabolism
20.
FEBS Lett ; 584(10): 2093-101, 2010 May 17.
Article in English | MEDLINE | ID: mdl-20085760

ABSTRACT

Chloride intracellular channel proteins (CLICs) are distinct from most ion channels in that they have both soluble and integral membrane forms. CLICs are highly conserved in chordates, with six vertebrate paralogues. CLIC-like proteins are found in other metazoans. CLICs form channels in artificial bilayers in a process favoured by oxidising conditions and low pH. They are structurally plastic, with CLIC1 adopting two distinct soluble conformations. Phylogenetic and structural data indicate that CLICs are likely to have enzymatic function. The physiological role of CLICs appears to be maintenance of intracellular membranes, which is associated with tubulogenesis but may involve other substructures.


Subject(s)
Chloride Channels/metabolism , Enzymes/metabolism , Animals , Cell Membrane/metabolism , Chloride Channels/chemistry , Chloride Channels/classification , Chloride Channels/genetics , Cytoskeleton/metabolism , Enzymes/chemistry , Enzymes/classification , Enzymes/genetics , Humans , Hydrogen-Ion Concentration , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...