Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Bioorg Med Chem ; 57: 116648, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35124457

ABSTRACT

Antibiotic resistance is one of the greatest threats to modern medicine. Drugs that were once routinely used to treat infections are being rendered ineffective, increasing the demand for novel antibiotics with low potential for resistance. Here we report the synthesis of 18 novel cationic tetrahydroisoquinoline-triazole compounds. Five of the developed molecules were active against S. aureus at a low MIC of 2-4 µg/mL. Hit compound 4b was also found to eliminate M. tuberculosis H37Rv at MIC of 6 µg/mL. This potent molecule was found to eliminate S. aureus effectively, with no resistance observed after thirty days of sequential passaging. These results identified compound 4b and its analogues as potential candidates for further drug development that could help tackle the threat of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Staphylococcus aureus/drug effects , Tetrahydroisoquinolines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/chemistry
2.
Bioorg Med Chem ; 48: 116401, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34555556

ABSTRACT

The emergence of multi-drug resistant bacteria has increased the need for novel antibiotics to help overcome what may be considered the greatest threat to modern medicine. Here we report the synthesis of fifteen novel 3,5-diaryl-1H- pyrazoles obtained via one-pot cyclic oxidation of a chalcone and hydrazine-monohydrate. The synthesised pyrazoles were then screened against Staphylococcus aureus and Escherichia coli to determine their antibacterial potential. The results show that compound 7p is bacteriostatic at MIC 8 µg/mL. The compound is non-toxic against healthy mammalian cells, 3T3-L1 at the highest test concentration 50 µg/mL. Furthermore, compound 7p significantly affected bacterial morphogenesis before cell lysis in Bacillus subtilis when treated above the MIC concentration. From the results, a promising lead compound was identified for future development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Escherichia coli/drug effects , Pyrazoles/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
3.
J Bacteriol ; 203(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-33722843

ABSTRACT

Rod-shaped bacteria such as Escherichia coli can regulate cell division in response to stress, leading to filamentation, a process where cell growth and DNA replication continues in the absence of division, resulting in elongated cells. The classic example of stress is DNA damage which results in the activation of the SOS response. While the inhibition of cell division during SOS has traditionally been attributed to SulA in E. coli, a previous report suggests that the e14 prophage may also encode an SOS-inducible cell division inhibitor, previously named SfiC. However, the exact gene responsible for this division inhibition has remained unknown for over 35 years. A recent high-throughput over-expression screen in E. coli identified the e14 prophage gene, ymfM, as a potential cell division inhibitor. In this study, we show that the inducible expression of ymfM from a plasmid causes filamentation. We show that this expression of ymfM results in the inhibition of Z ring formation and is independent of the well characterised inhibitors of FtsZ ring assembly in E. coli, SulA, SlmA and MinC. We confirm that ymfM is the gene responsible for the SfiC phenotype as it contributes to the filamentation observed during the SOS response. This function is independent of SulA, highlighting that multiple alternative division inhibition pathways exist during the SOS response. Our data also highlight that our current understanding of cell division regulation during the SOS response is incomplete and raises many questions regarding how many inhibitors there actually are and their purpose for the survival of the organism.Importance:Filamentation is an important biological mechanism which aids in the survival, pathogenesis and antibiotic resistance of bacteria within different environments, including pathogenic bacteria such as uropathogenic Escherichia coli Here we have identified a bacteriophage-encoded cell division inhibitor which contributes to the filamentation that occurs during the SOS response. Our work highlights that there are multiple pathways that inhibit cell division during stress. Identifying and characterising these pathways is a critical step in understanding survival tactics of bacteria which become important when combating the development of bacterial resistance to antibiotics and their pathogenicity.

4.
Antibiotics (Basel) ; 9(8)2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32824356

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) has proven to be an imminent threat to public health, intensifying the need for novel therapeutics. Previous evidence suggests that cannabinoids harbour potent antibacterial activity. In this study, a group of previously inaccessible phytocannabinoids and synthetic analogues were examined for potential antibacterial activity. The minimum inhibitory concentrations and dynamics of bacterial inhibition, determined through resazurin reduction and time-kill assays, revealed the potent antibacterial activity of the phytocannabinoids against gram-positive antibiotic-resistant bacterial species, including MRSA. One phytocannabinoid, cannabichromenic acid (CBCA), demonstrated faster and more potent bactericidal activity than vancomycin, the currently recommended antibiotic for the treatment of MRSA infections. Such bactericidal activity was sustained against low-and high-dose inoculums as well as exponential- and stationary-phase MRSA cells. Further, mammalian cell viability was maintained in the presence of CBCA. Finally, microscopic evaluation suggests that CBCA may function through the degradation of the bacterial lipid membrane and alteration of the bacterial nucleoid. The results of the current study provide encouraging evidence that cannabinoids may serve as a previously unrecognised resource for the generation of novel antibiotics active against MRSA.

5.
mSystems ; 5(3)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32606022

ABSTRACT

Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, Pseudomonas aeruginosa We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance.IMPORTANCE The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria.

6.
Sci Rep ; 10(1): 6745, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317661

ABSTRACT

Characterisation of protein function based solely on homology searches may overlook functions under specific environmental conditions, or the possibility of a protein having multiple roles. In this study we investigated the role of YtfB, a protein originally identified in a genome-wide screen to cause inhibition of cell division, and has demonstrated to localise to the Escherichia coli division site with some degree of glycan specificity. Interestingly, YtfB also shows homology to the virulence factor OapA from Haemophilus influenzae, which is important for adherence to epithelial cells, indicating the potential of additional function(s) for YtfB. Here we show that E. coli YtfB binds to N'acetylglucosamine and mannobiose glycans with high affinity. The loss of ytfB results in a reduction in the ability of the uropathogenic E. coli strain UTI89 to adhere to human kidney cells, but not to bladder cells, suggesting a specific role in the initial adherence stage of ascending urinary tract infections. Taken together, our results suggest a role for YtfB in adhesion to specific eukaryotic cells, which may be additional, or complementary, to its role in cell division. This study highlights the importance of understanding the possible multiple functions of proteins based on homology, which may be specific to different environmental conditions.


Subject(s)
Bacterial Adhesion/genetics , Cell Cycle Proteins/genetics , Cell Division/genetics , Escherichia coli Proteins/genetics , Uropathogenic Escherichia coli/genetics , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Carbohydrate Sequence , Cell Adhesion , Cell Cycle Proteins/deficiency , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Gene Expression , HEK293 Cells , Haemophilus influenzae/chemistry , Haemophilus influenzae/metabolism , Humans , Mannans/chemistry , Mannans/metabolism , Phylogeny , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Binding , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Uropathogenic Escherichia coli/classification , Uropathogenic Escherichia coli/cytology , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/genetics , Virulence Factors/metabolism
7.
J Antimicrob Chemother ; 75(6): 1415-1423, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32073605

ABSTRACT

BACKGROUND: Uropathogenic Escherichia coli (UPEC) are a major cause of urinary tract infection (UTI), one of the most common infectious diseases in humans. UPEC are increasingly associated with resistance to multiple antibiotics. This includes resistance to third-generation cephalosporins, a common class of antibiotics frequently used to treat UTI. METHODS: We employed a high-throughput genome-wide screen using saturated transposon mutagenesis and transposon directed insertion-site sequencing (TraDIS) together with phenotypic resistance assessment to identify key genes required for survival of the MDR UPEC ST131 strain EC958 in the presence of the third-generation cephalosporin cefotaxime. RESULTS: We showed that blaCMY-23 is the major ESBL gene in EC958 responsible for mediating resistance to cefotaxime. Our screen also revealed that mutation of genes involved in cell division and the twin-arginine translocation pathway sensitized EC958 to cefotaxime. The role of these cell-division and protein-secretion genes in cefotaxime resistance was confirmed through the construction of mutants and phenotypic testing. Mutation of these genes also sensitized EC958 to other cephalosporins. CONCLUSIONS: This work provides an exemplar for the application of TraDIS to define molecular mechanisms of resistance to antibiotics. The identification of mutants that sensitize UPEC to cefotaxime, despite the presence of a cephalosporinase, provides a framework for the development of new approaches to treat infections caused by MDR pathogens.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Urinary Tract Infections , Uropathogenic Escherichia coli , Cephalosporins/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli Proteins/genetics , Humans , Mutagenesis , Urinary Tract Infections/drug therapy , Uropathogenic Escherichia coli/genetics
8.
Nanoscale ; 12(4): 2384-2392, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31930233

ABSTRACT

The past decade has seen the incorporation of antimicrobial nanosilver (NAg) into medical devices, and, increasingly, in everyday 'antibacterial' products. With the continued rise of antibiotic resistant bacteria, there are concerns that these priority pathogens will also develop resistance to the extensively commercialized nanoparticle antimicrobials. Herein, this work reports the emergence of stable resistance traits to NAg in the WHO-listed priority pathogen Staphylococcus aureus, which has previously been suggested to have no, or very low, capacity for silver resistance. With no native presence of genetically encoded silver defence mechanisms, the work showed that the bacterium is dependent on mutation of physiologically essential genes, including those involved in nucleotide synthesis and oxidative stress defence. While some mutations were uniquely associated with resistance to NAg, the study also found common mutations that could be protective against both NAg and ionic silver. This is consistent with the observation of NAg/ionic silver cross-resistance. These mutations were detected following withdrawal of the silver exposure, denoting heritable characteristics that allow for spread of the resistance traits even with discontinued silver use. Heritable silver resistance in priority pathogen cautions that these nanoparticle antimicrobials should only be used as needed, to preserve their efficacy for treating infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Metal Nanoparticles/chemistry , Silver/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Ciprofloxacin/pharmacology , Gene Deletion , Ions , Microbial Sensitivity Tests , Mutation , Oxidative Stress , Point Mutation
9.
Sci Rep ; 9(1): 18160, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796774

ABSTRACT

Chronic wound treatment is becoming increasingly difficult and costly, further exacerbated when wounds become infected. Bacterial biofilms cause most chronic wound infections and are notoriously resistant to antibiotic treatments. The need for new approaches to combat polymicrobial biofilms in chronic wounds combined with the growing antimicrobial resistance crisis means that honey is being revisited as a treatment option due to its broad-spectrum antimicrobial activity and low propensity for bacterial resistance. We assessed four well-characterised New Zealand honeys, quantified for their key antibacterial components, methylglyoxal, hydrogen peroxide and sugar, for their capacity to prevent and eradicate biofilms produced by the common wound pathogen Pseudomonas aeruginosa. We demonstrate that: (1) honey used at substantially lower concentrations compared to those found in honey-based wound dressings inhibited P. aeruginosa biofilm formation and significantly reduced established biofilms; (2) the anti-biofilm effect of honey was largely driven by its sugar component; (3) cells recovered from biofilms treated with sub-inhibitory honey concentrations had slightly increased tolerance to honey; and (4) honey used at clinically obtainable concentrations completely eradicated established P. aeruginosa biofilms. These results, together with their broad antimicrobial spectrum, demonstrate that manuka honey-based wound dressings are a promising treatment for infected chronic wounds, including those with P. aeruginosa biofilms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Apitherapy/methods , Bandages , Honey , Microbial Sensitivity Tests/methods , New Zealand , Wound Infection/drug therapy
10.
ACS Infect Dis ; 5(8): 1279-1294, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31268666

ABSTRACT

The disturbing increase in the number of bacterial pathogens that are resistant to multiple, or sometimes all, current antibiotics highlights the desperate need to pursue the discovery and development of novel classes of antibacterials. The wealth of knowledge available about the bacterial cell division machinery has aided target-driven approaches to identify new inhibitor compounds. The main division target being pursued is the highly conserved and essential protein FtsZ. Despite very active research on FtsZ inhibitors for several years, this protein is not yet targeted by any commercial antibiotic. Here, we discuss the suitability of FtsZ as an antibacterial target for drug development and review progress achieved in this area. We use hindsight to highlight the gaps that have slowed progress in FtsZ inhibitor development and to suggest guidelines for concluding that FtsZ is actually the target of these molecules, a key missing link in several studies. In moving forward, a multidisciplinary, communicative, and collaborative process, with sharing of research expertise, is critical if we are to succeed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/chemistry , Bacteria/chemistry , Cell Division , Clinical Trials as Topic , Drug Discovery , Humans , Research
11.
Mol Microbiol ; 112(3): 766-784, 2019 09.
Article in English | MEDLINE | ID: mdl-31152469

ABSTRACT

Precise cell division in coordination with DNA replication and segregation is of utmost importance for all organisms. The earliest stage of cell division is the assembly of a division protein FtsZ into a ring, known as the Z ring, at midcell. What still eludes us, however, is how bacteria precisely position the Z ring at midcell. Work in B. subtilis over the last two decades has identified a link between the early stages of DNA replication and cell division. A recent model proposed that the progression of the early stages of DNA replication leads to an increased ability for the Z ring to form at midcell. This model arose through studies examining Z ring position in mutants blocked at different steps of the early stages of DNA replication. Here, we show that this model is unlikely to be correct and the mutants previously studied generate nucleoids with different capacity for blocking midcell Z ring assembly. Importantly, our data suggest that two proteins of the widespread ParB family, Noc and Spo0J are required to prevent Z ring assembly over the bacterial nucleoid and help fine tune the assembly of the Z ring at midcell during the cell cycle.


Subject(s)
Bacillus subtilis/cytology , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Division , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Cell Cycle , DNA Replication , Gene Expression Regulation, Bacterial
12.
BMC Genomics ; 19(1): 781, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30373517

ABSTRACT

BACKGROUND: Bacterial filamentation occurs when rod-shaped bacteria grow without dividing. To identify genetically encoded inhibitors of division that promote filamentation, we used cell sorting flow cytometry to enrich filamentous clones from an inducible expression library, and then identified the cloned DNA with high-throughput DNA sequencing. We applied the method to an expression library made from fragmented genomic DNA of uropathogenic E. coli UTI89, which undergoes extensive reversible filamentation in urinary tract infections and might encode additional regulators of division. RESULTS: We identified 55 genomic regions that reproducibly caused filamentation when expressed from the plasmid vector, and then further localized the cause of filamentation in several of these to specific genes or sub-fragments. Many of the identified genomic fragments encode genes that are known to participate in cell division or its regulation, and others may play previously-unknown roles. Some of the prophage genes identified were previously implicated in cell division arrest. A number of the other fragments encoded potential short transcripts or peptides. CONCLUSIONS: The results provided evidence of potential new links between cell division and distinct cellular processes including central carbon metabolism and gene regulation. Candidate regulators of the UTI-associated filamentation response or others were identified amongst the results. In addition, some genomic fragments that caused filamentation may not have evolved to control cell division, but may have applications as artificial inhibitors. Our approach offers the opportunity to carry out in depth surveys of diverse DNA libraries to identify new genes or sequences encoding the capacity to inhibit division and cause filamentation.


Subject(s)
Bacteria/genetics , Cell Division/genetics , Gene Expression Regulation, Bacterial , Escherichia coli Proteins/genetics , Gene Library , High-Throughput Nucleotide Sequencing , Open Reading Frames , Phenotype , Uropathogenic Escherichia coli/genetics
13.
Nanotoxicology ; 12(3): 263-273, 2018 04.
Article in English | MEDLINE | ID: mdl-29447029

ABSTRACT

Nanosilver (Ag NPs) is currently one of the most commercialized antimicrobial nanoparticles with as yet, still unresolved cytotoxicity origins. To date, research efforts have mostly described the antimicrobial contribution from the leaching of soluble silver, while the undissolved solid Ag particulates are often considered as being microbiologically inert, serving only as source of the cytotoxic Ag ions. Here, we show the rapid stimulation of lethal cellular oxidative stress in bacteria by the presence of the undissolved Ag particulates. The cytotoxicity characteristics are distinct from those arising from the leached soluble Ag, the latter being locked in organic complexes. The work also highlights the unique oxidative stress-independent bacterial toxicity of silver salt. Taken together, the findings advocate that future enquiries on the antimicrobial potency and also importantly, the environmental and clinical impact of Ag NPs use, should pay attention to the potential bacterial toxicological responses to the undissolved Ag particulates, rather than just to the leaching of soluble silver. The findings also put into question the common use of silver salt as model material for evaluating bacterial toxicity of Ag NPs.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Oxidative Stress/drug effects , Silver/chemistry , Silver/pharmacology , Bacillus subtilis/cytology , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Cell Proliferation/drug effects , Humans , Microbial Viability/drug effects , Solubility
14.
Front Microbiol ; 8: 1575, 2017.
Article in English | MEDLINE | ID: mdl-28878745

ABSTRACT

Productive bacterial cell division and survival of progeny requires tight coordination between chromosome segregation and cell division to ensure equal partitioning of DNA. Unlike rod-shaped bacteria that undergo division in one plane, the coccoid human pathogen Staphylococcus aureus divides in three successive orthogonal planes, which requires a different spatial control compared to rod-shaped cells. To gain a better understanding of how this coordination between chromosome segregation and cell division is regulated in S. aureus, we investigated proteins that associate with FtsZ and the divisome. We found that DnaK, a well-known chaperone, interacts with FtsZ, EzrA and DivIVA, and is required for DivIVA stability. Unlike in several rod shaped organisms, DivIVA in S. aureus associates with several components of the divisome, as well as the chromosome segregation protein, SMC. This data, combined with phenotypic analysis of mutants, suggests a novel role for S. aureus DivIVA in ensuring cell division and chromosome segregation are coordinated.

15.
Article in English | MEDLINE | ID: mdl-28642845

ABSTRACT

Escherichia coli ordinarily resides in the lower gastrointestinal tract in humans, but some strains, known as Uropathogenic E. coli (UPEC), are also adapted to the relatively harsh environment of the urinary tract. Infections of the urine, bladder and kidneys by UPEC may lead to potentially fatal bloodstream infections. To survive this range of conditions, UPEC strains must have broad and flexible metabolic capabilities and efficiently utilize scarce essential nutrients. Whole-organism (or "omics") methods have recently provided significant advances in our understanding of the importance of metabolic adaptation in the success of UPECs. Here we describe the nutritional and metabolic requirements for UPEC infection in these environments, and focus on particular metabolic responses and adaptations of UPEC that appear to be essential for survival in the urinary tract.


Subject(s)
Adaptation, Physiological , Escherichia coli Infections/urine , Urinary Tract Infections/microbiology , Urinary Tract/microbiology , Uropathogenic Escherichia coli/metabolism , Uropathogenic Escherichia coli/pathogenicity , Amino Acids/metabolism , Anti-Infective Agents/pharmacology , Biomarkers , Carbon/metabolism , Escherichia coli Infections/diagnosis , Escherichia coli Proteins/drug effects , Escherichia coli Proteins/metabolism , Humans , Intestines/microbiology , Iron/metabolism , Kidney/microbiology , Metabolism , Metabolomics , Purines/metabolism , Pyrimidines/metabolism , Urinary Bladder/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/growth & development , Virulence , Virulence Factors/metabolism
16.
ACS Nano ; 11(4): 3438-3445, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28339182

ABSTRACT

In this era of increasing antibiotic resistance, the use of alternative antimicrobials such as silver has become more widespread. Superior antimicrobial activity has been provided through fabrication of silver nanoparticles or nanosilver (NAg), which imparts cytotoxic actions distinct from those of bulk silver. In the wake of the recent discoveries of bacterial resistance to NAg and its rising incorporation in medical and consumer goods such as wound dressings and dietary supplements, we argue that there is an urgent need to monitor the prevalence and spread of NAg microbial resistance. In this Perspective, we describe how the use of NAg in commercially available products facilitates prolonged microorganism exposure to bioavailable silver, which underpins the development of resistance. Furthermore, we advocate for a judicial approach toward NAg use in order to preserve its efficacy and to avoid environmental disruption.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Bacterial/drug effects , Metal Nanoparticles/adverse effects , Metal Nanoparticles/chemistry , Silver/adverse effects , Silver/pharmacology , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Humans , Metal Nanoparticles/therapeutic use , Microbial Sensitivity Tests , Silver/chemistry
17.
Mol Biosyst ; 13(4): 677-680, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28232991

ABSTRACT

Condensation studies of chromosomal DNA in E. coli with a tetranuclear ruthenium complex are carried out and images obtained with wide-field fluorescence microscopy. Remarkably different condensate morphologies resulted, depending upon the treatment protocol. The occurrence of condensed nucleoid spirals in live bacteria provides evidence for the transertion hypothesis.


Subject(s)
Chromosomes, Bacterial , DNA, Bacterial , Escherichia coli/genetics , Chromosomes, Bacterial/drug effects , DNA, Bacterial/drug effects , Escherichia coli/drug effects , Escherichia coli/metabolism , Microscopy, Fluorescence , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Ribosomes/metabolism , Ruthenium/chemistry
18.
Methods Mol Biol ; 1535: 197-209, 2017.
Article in English | MEDLINE | ID: mdl-27914080

ABSTRACT

Advancements in optical microscopy technology have allowed huge progression in the ability to understand protein structure and dynamics in live bacterial cells using fluorescence microscopy. Paramount to high-quality microscopy is good sample preparation to avoid bacterial cell movement that can result in motion blur during image acquisition. Here, we describe two techniques of sample preparation that reduce unwanted cell movement and are suitable for application to a number of bacterial species and imaging methods.


Subject(s)
Bacteria , Microscopy, Fluorescence/methods , Image Processing, Computer-Assisted , Imaging, Three-Dimensional/methods
19.
Front Microbiol ; 8: 2653, 2017.
Article in English | MEDLINE | ID: mdl-29375518

ABSTRACT

Chronic wound infections are a major burden to both society and the health care industry. Bacterial biofilms are the major cause of chronic wound infections and are notoriously recalcitrant to treatments with antibiotics, making them difficult to eradicate. Thus, new approaches are required to combat biofilms in chronic wounds. One possible approach is to use drug combination therapies. Manuka honey has potent broad-spectrum antibacterial activity and has previously shown synergistic activity in combination with antibiotics against common wound pathogens, including Staphylococcus aureus. In addition, manuka honey exhibits anti-biofilm activity, thereby warranting the investigation of its potential as a combination therapy with antibiotics for the topical treatment of biofilm-related infections. Here we report the first use of MacSynergy II to investigate the response of established S. aureus (strain NCTC 8325) biofilms to treatment by combinations of Medihoney (medical grade manuka honey) and conventional antibiotics that are used for preventing or treating infections: rifampicin, oxacillin, fusidic acid, clindamycin, and gentamicin. Using checkerboard microdilution assays, viability assays and MacSynergy II analysis we show that the Medihoney-rifampicin combination was more effective than combinations using the other antibiotics against established staphylococcal biofilms. Medihoney and rifampicin were strongly synergistic in their ability to reduce both biofilm biomass and the viability of embedded S. aureus cells at a level that is likely to be significant in vivo. Other combinations of Medihoney and antibiotic produced an interesting array of effects: Medihoney-fusidic acid treatment showed minor synergistic activity, and Medihoney-clindamycin, -gentamicin, and -oxacillin combinations showed overall antagonistic effects when the honey was used at sub-inhibitory concentration, due to enhanced biofilm formation at these concentrations which could not be counteracted by the antibiotics. However, these combinations were not antagonistic when honey was used at the inhibitory concentration. Confocal scanning laser microscopy confirmed that different honey-antibiotic combination treatments could eradicate biofilms. Our results suggest that honey has potential as an adjunct treatment with rifampicin for chronic wounds infected with staphylococcal biofilms. We also show that MacSynergy II allows a comprehensive examination of the synergistic effects of honey-antibiotic combinations, and can help to identify doses for clinical use.

20.
PLoS One ; 11(12): e0167780, 2016.
Article in English | MEDLINE | ID: mdl-28030589

ABSTRACT

Most commercially available therapeutic honey is derived from flowering Leptospermum scoparium (manuka) plants from New Zealand. Australia has more than 80 Leptospermum species, and limited research to date has found at least some produce honey with high non-peroxide antibacterial activity (NPA) similar to New Zealand manuka, suggesting Australia may have a ready supply of medical-grade honey. The activity of manuka honey is largely due to the presence of methylglyoxal (MGO), which is produced non-enzymatically from dihydroxyacetone (DHA) present in manuka nectar. The aims of the current study were to chemically quantify the compounds contributing to antibacterial activity in a collection of Australian Leptospermum honeys, to assess the relationship between MGO and NPA in these samples, and to determine whether NPA changes during honey storage. Eighty different Leptospermum honey samples were analysed, and therapeutically useful NPA was seen in samples derived from species including L. liversidgei and L. polygalifolium. Exceptionally high levels of up to 1100 mg/kg MGO were present in L. polygalifolium honey samples sourced from the Northern Rivers region in NSW and Byfield, QLD, with considerable diversity among samples. There was a strong positive relationship between NPA and MGO concentration, and DHA was present in all of the active honey samples, indicating a potential for ongoing conversion to MGO. NPA was stable, with most samples showing little change following seven years of storage in the dark at 4°C. This study demonstrates the potential for Australian Leptospermum honey as a wound care product, and argues for an extension of this analysis to other Leptospermum species.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Honey/analysis , Leptospermum/chemistry , Pyruvaldehyde/analysis , Dihydroxyacetone/analysis , Structure-Activity Relationship , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...