Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Psychol ; 69(6): 295-307, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36809160

ABSTRACT

Smith et al. (2019) found standing resulted in better performance than sitting in three different cognitive control paradigms: a Stroop task, a task-switching, and a visual search paradigm. Here, we conducted close replications of the authors' three experiments using larger sample sizes than the original work. Our sample sizes had essentially perfect power to detect the key postural effects reported by Smith et al. The results from our experiments revealed that, in contrast to Smith et al., the postural interactions were quite limited in magnitude in addition to being only a fraction of the size of the original effects. Moreover, our results from Experiment 1 are consistent with two recent replications (Caron et al., 2020; Straub et al., 2022), which reported no meaningful influences of posture on the Stroop effect. In all, the current research provides further converging evidence that postural influences on cognition do not appear to be as robust, as was initially reported in prior work.


Subject(s)
Cognition , Psychomotor Performance , Humans , Attention , Stroop Test , Posture
2.
Psychon Bull Rev ; 29(2): 613-626, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34755319

ABSTRACT

The Action-sentence Compatibility Effect (ACE) is a well-known demonstration of the role of motor activity in the comprehension of language. Participants are asked to make sensibility judgments on sentences by producing movements toward the body or away from the body. The ACE is the finding that movements are faster when the direction of the movement (e.g., toward) matches the direction of the action in the to-be-judged sentence (e.g., Art gave you the pen describes action toward you). We report on a pre-registered, multi-lab replication of one version of the ACE. The results show that none of the 18 labs involved in the study observed a reliable ACE, and that the meta-analytic estimate of the size of the ACE was essentially zero.


Subject(s)
Comprehension , Language , Humans , Movement , Reaction Time
3.
Cogn Sci ; 33(3): 345-73, 2009 May.
Article in English | MEDLINE | ID: mdl-21585474

ABSTRACT

Events have beginnings, ends, and often overlap in time. A major question is how perceivers come to parse a stream of multimodal information into meaningful units and how different event boundaries may vary event processing. This work investigates the roles of these three types of event boundaries in constructing event temporal relations. Predictions were made based on how people would err according to the beginning state, end state, and overlap heuristic hypotheses. Participants viewed animated events that include all the logical possibilities of event temporal relations, and then made temporal relation judgments. The results showed that people make use of the overlap between events and take into account the ends and beginnings, but they weight ends more than beginnings. Neural network simulations showed a self-organized distinction when learning temporal relations between events with overlap versus those without.

4.
Cogn Neurodyn ; 1(3): 213-23, 2007 Sep.
Article in English | MEDLINE | ID: mdl-19003514

ABSTRACT

Dynamic adaptation is a key feature of brains helping to maintain the quality of their performance in the face of increasingly difficult constraints. How to achieve high-quality performance under demanding real-time conditions is an important question in the study of cognitive behaviors. Animals and humans are embedded in and constrained by their environments. Our goal is to improve the understanding of the dynamics of the interacting brain-environment system by studying human behaviors when completing constrained tasks and by modeling the observed behavior. In this article we present results of experiments with humans performing tasks on the computer under variable time and resource constraints. We compare various models of behavior generation in order to describe the observed human performance. Finally we speculate on mechanisms how chaotic neurodynamics can contribute to the generation of flexible human behaviors under constraints.

5.
IEEE Trans Neural Netw ; 16(3): 565-79, 2005 May.
Article in English | MEDLINE | ID: mdl-15940987

ABSTRACT

Mesoscopic level neurodynamics study the collective dynamical behavior of neural populations. Such models are becoming increasingly important in understanding large-scale brain processes. Brains exhibit aperiodic oscillations with a much more rich dynamical behavior than fixed-point and limit-cycle approximation allow. Here we present a discretized model inspired by Freeman's K-set mesoscopic level population model. We show that this version is capable of replicating the important principles of aperiodic/chaotic neurodynamics while being fast enough for use in real-time autonomous agent applications. This simplification of the K model provides many advantages not only in terms of efficiency but in simplicity and its ability to be analyzed in terms of its dynamical properties. We study the discrete version using a multilayer, highly recurrent model of the neural architecture of perceptual brain areas. We use this architecture to develop example action selection mechanisms in an autonomous agent.


Subject(s)
Biological Clocks/physiology , Biomimetics/methods , Brain/physiology , Models, Neurological , Nerve Net/physiology , Neural Inhibition/physiology , Neural Networks, Computer , Synaptic Transmission/physiology , Action Potentials/physiology , Animals , Artificial Intelligence , Computer Simulation , Humans , Robotics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...