Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 16(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38535782

ABSTRACT

There is a limited research focus on evaluating the detrimental effects of prolonged zearalenone (ZEN) intake on dairy cows' health under controlled conditions. This experiment was conducted to evaluate whether the length of exposure to a ZEN-contaminated total mixed ration (TMR) at a level of 9.45 mg per day can negatively influence animal health parameters, such as milk composition, rumen and fecal fermentation, and the chewing activity of lactating dairy cows. For this experiment, we used 18 lactating Simmental cows that were fed a diet of 60% forage and 40% concentrate (on dry matter basis) for 26 consecutive days. The first 4 days were for adaptation prior to the first sampling day (day 0). The sampling events took place on day 0 (baseline) without ZEN, followed by day 1, day 7, day 14, and day 21 (with toxin). Dry matter intake (DMI) and ruminating chews per minute increased on the third week of ZEN inclusion; meanwhile, ruminating, eating, and drinking times were not affected. Most milk composition variables were also unaffected. Rumen fluid osmolality increased on day 21 and total short-chain fatty acids (SCFA) of ruminal fluid decreased on day 7. Fecal SCFA increased on day 21 and the acetate-to-propionate ratio increased from day 1 onwards, showing the influence of toxin intake. Animal health parameters, like heart rate, respiratory rate, and body temperature, were negatively influenced by ZEN intake, all increasing consistently on days 4 and 6, 9 and 12, and 16 and 18, respectively. The liver enzyme glutamate dehydrogenase decreased in response to ZEN intake on day 7. A total daily ZEN intake at the level of 9.45 mg did not show detrimental effects on DMI. Nevertheless, certain health parameters were negatively affected, including body temperature, respiratory rate, and heart rate, starting from the 7th day of ZEN intake, with additional signs of possible loss of water balance on the last sampling day.


Subject(s)
Body Fluids , Zearalenone , Female , Animals , Cattle , Lactation , Milk , Body Temperature
2.
Anim Microbiome ; 6(1): 12, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481349

ABSTRACT

BACKGROUND: Recent data indicated similar growth performance of young calves fed solely high-quality hay instead of a starter diet based on starchy ingredients. Yet, providing exclusively such distinct carbohydrate sources during early life might specifically prime the microbiota and gene expression along the gut of young calves, which remains to be explored. We investigated the effects of starter diets differing in carbohydrate composition, that is medium- or high-quality hay and without or with 70% concentrate supplementation (on fresh matter basis), across the gastrointestinal tract (GIT) of weaned Holstein calves (100 ± 4 days of age) using 16 S rRNA gene sequencing and analyses of short-chain fatty acids and host epithelial gene expressions. RESULTS: The concentrate supplementation drastically decreased microbial diversity throughout the gut, which was also true to a much lesser extent for high-quality hay when compared to medium-quality hay in the foregut. Similarly, the factor concentrate strongly shaped the diet-associated common core microbiota, which was substantially more uniform along the gut with concentrate supplementation. The fermentation profile shifted towards less acetate but more propionate with concentrate supplementation in almost all gut sections, corresponding with higher abundances of starch-utilizing bacteria, while major fibrolytic clusters declined. Noteworthy, the n-butyrate proportion decreased in the rumen and increased in the colon with concentrate, showing an opposite, gut site-dependent effect. Both dietary factors modestly influenced the host epithelial gene expression. CONCLUSIONS: Concentrate supplementation clearly primed the microbial ecosystem on a starch-targeted fermentation with characteristic genera occupying this niche along the entire GIT of calves, whereas the microbial differentiation due to hay quality was less distinct. Overall, changes in the microbial ecosystem were only marginally reflected in the targeted transcriptional profile of the host epithelium.

3.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38364366

ABSTRACT

First-lactation cows are particularly prone to subacute ruminal acidosis (SARA) during transition. Besides common risk factors of SARA, such as feeding of starch-rich diets, an individual severity of SARA in cows has been recently evidenced. Yet, the factors that play a role in SARA severity have not been elucidated. The main goal of this research was to evaluate the factors of SARA severity in first-lactation cows during transition and early lactation, which go beyond high-grain feeding, and to explore their impact on behavior, health, and fermentation in the rumen and hindgut. Twenty-four first-lactation Holstein cows with the same feeding regime were used starting from 3 wk before the expected calving day until 10 wk postpartum. Cows received a close-up diet (32% concentrate) until calving and were then transitioned to a lactation diet (60% concentrate) within 1 week. The SARA severity was assessed by cluster analysis of several rumen pH metrics, which revealed exceptionally longer and more severe SARA in cows denominated as high (n = 9), as compared to moderate (n = 9) and low (n = 6) SARA severity cows (P < 0.01). The logistic analysis showed that the length of close-up feeding, age at parturition, and the level of dry matter intake (DMI) were the main factors that influenced the cows' odds for high SARA severity (each P ≤ 0.01). Moreover, the ANOVA hinted differences in the metabolic activity of the ruminal microbiome to promote SARA severity, as indicated by highest ruminal propionate proportions (P = 0.05) in high SARA severity cows, also with similar DMI. The distinct SARA severity was marginally reflected in behavior and there were no effects of SARA severity or high-grain feeding on blood inflammation markers, which peaked at parturition regardless of SARA severity (P < 0.01). Still, ongoing high-grain feeding increased liver enzyme concentrations from 6 wk postpartum on, compared to weeks before (P < 0.01), yet irrespectively of SARA severity. In conclusion, first-lactation cows differed in SARA severity under the same feeding regime, which was ascribed to management factors and differences in ruminal fermentation. Further research is warranted to validate these findings and to understand the mechanisms behind differences in the metabolic function of rumen microbiome, in particular in terms of evaluating markers for various SARA severity, as well as to evaluate potential long-term effects on health, performance, fertility, and longevity of dairy cows.


The present study reports a high variation of severity of subacute rumen acidosis in first-lactation dairy cows with the same feeding regimen close to parturition and until 10 weeks after parturition. Six significant factors influencing this severity were identified, including in particular length of close-up period, age at parturition, and dry matter intake. Therefore, management factors seem to play a key role for the development of a severe subacute rumen acidosis. Cows with high severity showed marginally altered behavior but distinct rumen fermentation patterns compared to cows with low severity, suggesting also a key role of the ruminal microbiome for subacute rumen acidosis risk in cows. The higher severity was not associated with systemic inflammation and all cows remained healthy.


Subject(s)
Acidosis , Cattle Diseases , Female , Cattle , Animals , Rumen/metabolism , Cattle Diseases/metabolism , Hydrogen-Ion Concentration , Lactation , Diet/veterinary , Diet/adverse effects , Acidosis/veterinary , Milk/metabolism
4.
Arch Anim Nutr ; 77(6): 452-467, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38012072

ABSTRACT

Forage-based diets are encouraged in organic dairy cattle production as this can increase the net human food supply, but their voluminous nature can limit dry matter intake (DMI) and performance. This study investigates the effects of a substantial particle size reduction of hay on dairy cows' feed intake, performance, and body characteristics, as well as on apparent total tract digestibility (ATTD). Eighteen lactating Holstein cows were allocated to two balanced feeding groups. The control group received long stem hay with a conventional particle size (CON), the experimental group received chopped hay (RED). Both groups were supplemented with concentrates (3.6 kg/d, DM basis). After 14 adaptation days, data were collected for 20 consecutive days. A covariate period of 21 days preceded the experimental feeding period. Particles retained on the 19-, 8- and 4-mm screens and on the pan of the Penn State Particle Separator accounted for 21%, 20%, 20% and 39% of the RED hay. CON hay consisted of 72% large particles, followed by 8%, 7% and 13% retained on the other screens. Average DMI levels of cows in the CON group reached 20.8 kg/d, with a nonsignificant increase (+1.05 kg/d) in the RED group (p = 0.28). Intakes of both NFC (+0.65 kg/d, p = 0.01) and CP (+0.28 kg/d, p = 0.05) were significantly greater in the RED group, resulting in a slightly increased milk yield (+0.8 kg energy corrected milk/d) (p = 0.45), likely because the ATTD decreased significantly when feeding RED hay. No impact was observed on energy balance (103.7 vs 103.9%, p = 0.95), feed conversion efficiency (kg ECM/kg DMI), or N use efficiency. Overall, the results indicate increases in intake of NFC and CP in the RED group when feeding a hay-based (>83%, DM basis) diet, but also a decrease in nutrient digestibility, likely due to increased passage rate, potentially because of the high fraction of hay particles < 4 mm. In conclusion, hay-based rations with a lower proportion of fine particles should be tested to exploit the potential of particle size reduction in terms of improving hay use efficiency.


Subject(s)
Diet , Lactation , Female , Humans , Cattle , Animals , Diet/veterinary , Animal Feed/analysis , Particle Size , Grassland , Digestion , Milk , Eating , Nutrients , Rumen , Silage
5.
J Dairy Sci ; 106(12): 8758-8773, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678776

ABSTRACT

Supplemental Mg sources differ in bioavailability, and solubility is one of the determining factors. We explored whether and which in vitro solubility tests could reliably differentiate the quality of supplemental Mg sources. In experiment 1, we compared 3 chemical methods using an acetic acid solution (50 mL/L, termed vinegar test), a 1 M ammonium nitrate solution, and an artificial rumen buffer fluid without rumen microbiota. The Mg solubility results suggested the vinegar test was the best method due to its robustness, simplicity, and reproducibility. In experiment 2, we validated the reliability of the vinegar test using 4 MgO sources from experiment 1 and 12 new MgO sources plus a laboratory-grade MgO as a standard. Accordingly, we repeated the vinegar test with short (0.5 h) and long (3.0 h) incubation times on these sources and then conducted ruminal incubations in 24-h batch culture experiments. The repeated vinegar test resulted in similar results as in experiment 1. Linear regression across both experiments showed the soluble Mg content (g/kg) = 44.46 (±2.55) × pH - 142.9 (±14.9), root mean square error (RMSE) = 10.2, P slope <0.001, and concordance correlation coefficient (CCC) = 0.953. The predictable pH range was from 4 to 6. The equation cannot be applied to low-alkaline sources such as Mg sulfate, Mg acetate, or a group of MgO with exceptionally high alkaline properties showing a cluster of pH above 8.5. Solubility of the MgO sources in the vinegar test ranged from 5 to 35%, whereas the 24-h ruminal incubations led to more solubility (15-70%). Nevertheless, the differences among most MgO sources were parallel to the data from the in vitro rumen solubility. Next, we performed a meta-analysis of published studies (21 studies, 94 treatments) to assess the true Mg absorption in vivo and potential factors affecting Mg absorption in dairy cows. It appeared that on average dairy cows absorbed about 20% of the Mg intake (range 10-40%), regardless of their lactation status. We revealed a new strategy to predict Mg absorption relative to dietary K as follows: true Mg absorption (g/d) = 0.3395 (±0.025, P < 0.001) × Mg intake (g/d) - 1.9273 (±1.16, P = 0.11) when dietary K ≤20 g/kg DM, and 0.154 (±1.06, P = 0.05) + 0.209 (±0.026, P < 0.001) × Mg intake (g/d) when dietary K >20 g/kg DM (RMSE = 2.19). This strategy improved the accuracy of prediction as compared with the existing prediction (CCC = 0.922 vs. 0.845). Still, over- or underestimations inherent to individual studies were evident and might be related to unaccountable factors, especially the quality of supplemental Mg sources. In conclusion, the vinegar test is a useful tool to rank inorganic Mg sources with alkaline properties. Including in vitro solubility data in Mg nutrition research could help to refine the prediction of bioavailable Mg contents and increase precision in feed formulation.


Subject(s)
Magnesium Oxide , Magnesium , Female , Cattle , Animals , Reproducibility of Results , Solubility , Acetic Acid/analysis , Diet/veterinary , Rumen/chemistry , Lactation , Animal Feed/analysis , Milk/chemistry
6.
Animals (Basel) ; 13(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37106981

ABSTRACT

This study aimed to evaluate the effects of diet-induced subacute rumen acidosis (SARA) severity during transition and the early lactation period on claw health in 24 first-lactation Holstein heifers. All heifers were fed a 30% concentrate (in dry matter) close-up ration three weeks before calving, then switched to a high-concentrate ration (60% dry matter), which was fed until the 70th day in milk (DIM) to induce SARA. Thereafter, all cows were fed the same post-SARA ration with around 36% concentrate in dry matter. Hoof trimming was performed before calving (visit 1), at 70 (visit 2) and at 160 DIM (visit 3). All claw lesions were recorded, and a Cow Claw Score (CCS) was calculated for each cow. Locomotion scores (LCS 1-5) were assessed at two-week intervals. Intraruminal sensors for continuous pH measurements were used to determine SARA (pH below 5.8 for more than 330 min in 24 h). The cluster analysis grouped the cows retrospectively into light (≤11%; n = 9), moderate (>11-<30%; n = 7), and severe (>30%; n = 8) SARA groups, based on the percentage of days individual cows experienced SARA. Statistically significant differences were found between SARA groups light and severe in terms of lameness incidence (p = 0.023), but not for LCS and claw lesion prevalence. Further, the analysis of maximum likelihood estimates revealed that for each day experiencing SARA, the likelihood of becoming lame increased by 2.52% (p = 0.0257). A significant increase in white line lesion prevalence was observed between visits 2 and 3 in the severe SARA group. The mean CCS in severe SARA group cows were higher at each visit compared to cows in the other two groups, but without statistical significance. Overall, this is the first study indicating that first-lactation cows fed a similar high-concentrate diet but with a higher severity of SARA tended to have poorer claw health, albeit with only partial statistical evidence.

7.
Toxins (Basel) ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: mdl-36977076

ABSTRACT

The study investigated the short-term effects of a single oral bolus of zearalenone (ZEN) on the rumen microbiota and fermentation patterns in four rumen-cannulated Holstein cows fed a forage diet with daily 2 kg/cow concentrate. During the baseline day, cows received uncontaminated concentrate, followed by ZEN-contaminated concentrate on the second day, and again the uncontaminated concentrate on day three. Free rumen liquid (FRL) and particle-associated rumen liquid (PARL) were collected at different hours post-feeding on all days to analyze the prokaryotic community composition, absolute abundances of bacteria, archaea, protozoa, and anaerobic fungi, as well as short-chain fatty acid (SCFA) profiles. The ZEN reduced the microbial diversity in FRL but not in the PARL fraction. The abundance of protozoa was higher after ZEN exposure in PARL, which may be related to their strong biodegradation capacity that, therefore, promoted protozoal growth. In contrast, α-zearalenol might compromise anaerobic fungi as indicated by reduced abundances in FRL and fairly negative correlations in both fractions. Total SCFA significantly increased in both fractions after ZEN exposure, while the SCFA profile only changed marginally. Concluding, a single ZEN challenge caused changes in the rumen ecosystem soon after intake, including ruminal eukaryotes, that should be the subject of future studies.


Subject(s)
Microbiota , Zearalenone , Female , Cattle , Animals , Zearalenone/toxicity , Zearalenone/metabolism , Rumen/metabolism , Diet/veterinary , Fatty Acids, Volatile/metabolism , Fermentation , Animal Feed/analysis , Lactation/metabolism
8.
Appl Microbiol Biotechnol ; 106(19-20): 6819-6832, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36100752

ABSTRACT

This study investigated silage quality characteristics and ruminal fiber degradability of grass and straw ensiled with either anaerobic fungi (AF) supernatant with active fungal enzymes or mixed ruminal fluid as novel silage additives. Compared to control silages, AF supernatant improved the quality of grass and straw silages as evidenced by decreased pH, acetic acid concentration, and dry matter losses. Likewise, mixed ruminal fluid enhanced lactic acid fermentation, which further resulted in lower pH of the treated grass silage. The ruminal fiber degradability was determined using in situ incubations and, compared to controls, the cellulose degradability was higher for grass silage with AF supernatant, whereas ruminal degradability of straw silage was reduced by this treatment. In contrast, mixed ruminal fluid did not influence fiber degradability of silages in the rumen. Concluding, both novel additives improved silage quality, whereas only AF supernatant enhanced ruminal fiber degradability of grass silage and therefore may represent an approach for improving forage utilization by ruminants. KEY POINTS: • Enzymes of anaerobic fungi supernatant improve quality of grass and straw silages. • Mixed ruminal fluid enhances lactic acid fermentation when ensiling grass and straw. • Enzymes of anaerobic fungi supernatant increase ruminal grass silage degradability.


Subject(s)
Rumen , Silage , Acetates/metabolism , Anaerobiosis , Animals , Cellulose/metabolism , Dietary Fiber/metabolism , Fermentation , Fungi , Lactic Acid/metabolism , Poaceae , Rumen/microbiology , Silage/microbiology
9.
Sci Rep ; 12(1): 12383, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35858964

ABSTRACT

The transition from milk to solid diets drastically impacts the gut microbiome of calves. We explored the microbial communities of ruminal fluid and feces of Holstein calves when fed milk on d 7 of life, and when fed solid feeds based on either medium- or high-quality hay with or without concentrate inclusion (70% in fresh matter) on d 91. Ruminal fluid and feces had distinct microbial compositions already on d 7, showing that niche specialization in early-life gut is rather diet-independent. Changes between d 7 and d 91 were accompanied by a general increase in microbial diversity. Solid diets differed largely in their carbohydrate composition, being reflected in major changes on d 91, whereby concentrate inclusion was the main driver for differences among groups and strongly decreased microbial diversity in both matrices. Fecal enterotyping revealed two clusters: concentrate-supplemented animals had an enterotype prevalent in Prevotella, Succinivibrio and Anaerovibrio, whereas the enterotype of animals without concentrate was dominated by fibrolytic Ruminococcaceae. Hay quality also affected microbial composition and, compared to medium-quality, high-quality hay reduced alpha-diversity metrics. Concluding, our study revealed that concentrate inclusion, more than hay quality, dictates the establishment of niche-specific, microbial communities in the rumen and feces of calves.


Subject(s)
Microbiota , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Carbohydrates/metabolism , Feces , Fermentation , Milk , Rumen/metabolism
10.
Food Chem Toxicol ; 162: 112900, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35247503

ABSTRACT

Zearalenone (ZEN) and fumonisins (FUM) jeopardize fertility and health in cattle; yet, their toxigenic effects on rumen health and microbiota, both being crucial for animal health, are not clarified. This study determined the effects of a short-term exposure to ZEN or FUM on the rumen ecosystem, and further evaluated acute implications on health parameters. Six cows were fed a basal diet with 40% grain (dry matter basis) and exposed to either 5 mg of ZEN or 20 mg of FUM daily for two consecutive days each, separated by a 7-days washout period. The exposure to ZEN or FUM led to a reduction of Lachnospiraceae and Prevotellaceae in the rumen. Similarly, ZEN lowered the ruminal pH and total short-chain fatty acid concentration, despite increased rumination activity of the cows. Fumonisins increased the number of observed features and significantly impacted ß-diversity structure and metagenome predicted function. At the systemic level, FUM exposure suggested an immediate hepatotoxic effect, as evidenced by increased liver enzyme concentrations, which were accompanied by altered heart and respiratory rates. Similarly, ZEN increased the body temperature up to a mild fever. Concluding, short-term exposure to ZEN and FUM can harm the rumen ecosystem and acutely impair systemic health.

11.
Front Vet Sci ; 8: 714545, 2021.
Article in English | MEDLINE | ID: mdl-34722695

ABSTRACT

Starch-rich diets are a commonly adopted strategy in order to sustain high milk yields in dairy cows. However, these diets are known to increase the risk of gut dysbiosis and related systemic health disorders. This study aimed to evaluate the effects of supplementing a clay mineral-based feed additive (CM; Mycofix® Plus, BIOMIN) on fecal microbiota structure, fecal short-chain fatty acid (SCFA) fermentation, serum metabolome, and liver health in primiparous (PP, n = 8) and multiparous (MP, n = 16) early-lactation Simmental cows (737 ± 90 kg of live body weight). Cows were randomly assigned to either a control or CM group (55 g per cow and day) and transitioned from a diet moderate in starch (26.3 ± 1.0%) to a high starch diet (32.0 ± 0.8%). Supplementation of CM reversed the decrease in bacterial diversity, richness, and evenness (p < 0.05) during high-starch diet, demonstrating that CM supplementation efficiently eased hindgut dysbiosis. The CM treatment reduced levels of Lactobacillus in PP cows during starch-rich feeding and elevated fecal pH, indicating a healthier hindgut milieu compared with that in control. Butyrate and propionate levels were modulated by CM supplementation, with butyrate being lower in CM-treated MP cows, whereas propionate was lower in MP but higher in PP cows. Supplementing CM during high-starch feeding increased the concentrations of the main primary bile salts and secondary bile acids in the serum and improved liver function in cows as indicated by reduced levels of glutamate dehydrogenase and γ-glutamyl-transferase, as well as higher serum albumin and triglyceride concentrations. These changes and those related to lipid serum metabolome were more pronounced in PP cows as also corroborated by relevance network analysis.

12.
Arch Anim Nutr ; 75(3): 153-166, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34165019

ABSTRACT

Precise and continual information on the energy supply from pasture is mandatory for managing grazing ruminants. Therefore, estimating the organic matter (OM) digestibility from faecal crude protein concentration using the regression equation, OM digestibility [%] = 79.76-107.7 · e(-0.01515 · faecal crude protein [g/kg OM]), is known to be a suitable tool. However, essential information regarding faeces sampling times and the required number of samples are not yet available. We therefore analysed the OM digestibility data of an experiment with dairy cows grazing two pasture types and receiving two concentrate types over 6 d in three independent runs. Both pasture type and grazing day affected the OM digestibility estimates, whereas concentrate type and intake did not, indicating that this method reliably detects small changes in OM digestibility of pasture without being interfered by moderate concentrate supplementation, selective grazing behaviour or differences in feed intake. Likewise, as sampling time did not influence OM digestibility, faeces sampling once daily can be recommended to be sufficient for an accurate estimation of OM digestibility. The variance within pasture type and grazing day amounted for 1.1 percentage units of estimated OM digestibility, which enabled to define the minimum sample number required to detect given differences in OM digestibility with adequate statistical certainty. In conclusion, estimating OM digestibility from faecal crude protein concentration is an applicable and sensitive method to reliably detect differences in the quality of ingested pasture using a limited number of animals. Therefore, instructions for faeces sample collection  were provided.


Subject(s)
Animal Feed/analysis , Digestion , Organic Chemicals/metabolism , Animal Nutritional Physiological Phenomena , Animals , Cattle , Dairying , Diet/veterinary , Eating , Female
13.
J Fungi (Basel) ; 7(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802104

ABSTRACT

The ruminal microbiota allows ruminants to utilize fibrous feeds and is in the limelight of ruminant nutrition research for many years. However, the overwhelming majority of investigations have focused on bacteria, whereas anaerobic fungi (AF) have been widely neglected by ruminant nutritionists. Anaerobic fungi are not only crucial fiber degraders but also important nutrient sources for the host. This review summarizes the current findings on AF and, most importantly, discusses their new application potentials in modern ruminant nutrition. Available data suggest AF can be applied as direct-fed microbials to enhance ruminal fiber degradation, which is indeed of interest for high-yielding dairy cows that often show depressed ruminal fibrolysis in response to high-grain feeding. Moreover, these microorganisms have relevance for the nutrient supply and reduction of methane emissions. However, to reach AF-related improvements in ruminal fiber breakdown and animal performance, obstacles in large-scale AF cultivation and applicable administration options need to be overcome. At feedstuff level, silage production may benefit from the application of fungal enzymes that cleave lignocellulosic structures and consequently enable higher energy exploitation from forages in the rumen. Concluding, AF hold several potentials in improving ruminant feeding and future research efforts are called for to harness these potentials.

14.
Front Microbiol ; 10: 2761, 2019.
Article in English | MEDLINE | ID: mdl-31849900

ABSTRACT

Alfalfa (Medicago sativa L.) silage (AS) is an important feedstuff in ruminant nutrition. However, its high non-protein nitrogen content often leads to poor ruminal nitrogen retention. Various pre-ensiling treatments differing with respect to dry matter concentrations, wilting intensities and sucrose addition have been previously shown to improve the quality and true protein preservation of AS, and have substantial effects on in vitro ruminal fermentation of the resulting silages. However, it is unknown how these pre-ensiling treatments affect the ruminal microbiota composition, and whether alterations in the microbiota explain previously observed differences in ruminal fermentation. Therefore, during AS incubation in a rumen simulation system, liquid and solid phases were sampled 2 and 7 days after first incubating AS, representing an early (ET) and late (LT) time point, respectively. Subsequently, DNA was extracted and qPCR (bacteria, archaea, and anaerobic fungi) and prokaryotic 16S rRNA gene amplicon sequence analyses were performed. At the ET, high dry matter concentration and sucrose addition increased concentrations of archaea in the liquid phase (P = 0.001) and anaerobic fungi in the solid phase (P < 0.001). At the LT, only sucrose addition increased archaeal concentration in the liquid phase (P = 0.014) and anaerobic fungal concentration in the solid phase (P < 0.001). Bacterial concentrations were not affected by pre-ensiling treatments. The prokaryotic phylogenetic diversity index decreased in the liquid phase from ET to LT (P = 0.034), whereas the solid phase was not affected (P = 0.060). This is suggestive of a general adaption of the microbiota to the soluble metabolites released from the incubated AS, particularly regarding the sucrose-treated AS. Redundancy analysis of the sequence data at the genus level indicated that sucrose addition (P = 0.001), time point (P = 0.001), and their interaction (P = 0.001) affected microbial community composition in both phases. In summary, of the pre-ensiling treatments tested sucrose addition had the largest effect on the microbiota, and together with sampling time point affected microbiota composition in both phases of the rumen simulation system. Thus, microbiota composition analysis helped to understand the ruminal fermentation patterns, but could not fully explain them.

15.
Article in English | MEDLINE | ID: mdl-29721317

ABSTRACT

Nitrogenous emissions from ruminant livestock production are of increasing public concern and, together with methane, contribute to environmental pollution. The main cause of nitrogen-(N)-containing emissions is the inadequate provision of N to ruminants, leading to an excess of ammonia in the rumen, which is subsequently excreted. Depending on the size and molecular structure, various bacterial, protozoal and fungal species are involved in the ruminal breakdown of nitrogenous compounds (NC). Decelerating ruminal NC degradation by controlling the abundance and activity of proteolytic and deaminating microorganisms, but without reducing cellulolytic processes, is a promising strategy to decrease N emissions along with increasing N utilization by ruminants. Different dietary options, including among others the treatment of feedstuffs with heat or the application of diverse feed additives, as well as vaccination against rumen microorganisms or their enzymes have been evaluated. Thereby, reduced productions of microbial metabolites, e.g. ammonia, and increased microbial N flows give evidence for an improved N retention. However, linkage between these findings and alterations in the rumen microbiota composition, particularly NC-degrading microbes, remains sparse and contradictory findings confound the exact evaluation of these manipulating strategies, thus emphasizing the need for comprehensive research. The demand for increased sustainability in ruminant livestock production requests to apply attention to microbial N utilization efficiency and this will require a better understanding of underlying metabolic processes as well as composition and interactions of ruminal NC-degrading microorganisms.

16.
Article in English | MEDLINE | ID: mdl-28469845

ABSTRACT

BACKGROUND: Bacillus spp. seem to be an alternative to antimicrobial growth promoters for improving animals' health and performance. However, there is little information on the effect of Bacillus spp. in combination with different dietary crude protein (CP) levels on the ileal digestibility and microbiota composition. Therefore, the objective of this study was to determine the effect of Bacillus spp. supplementation to low- (LP) and high-protein diets (HP) on ileal CP and amino acid (AA) digestibility and intestinal microbiota composition. METHODS: Eight ileally cannulated pigs with an initial body weight of 28.5 kg were randomly allocated to a row-column design with 8 pigs and 3 periods of 16 d each. The assay diets were based on wheat-barley-soybean meal with two protein levels: LP (14% CP, as-fed) and HP diet (18% CP, as-fed). The LP and HP diets were supplemented with or without Bacillus spp. at a level of 0.04% (as-fed). The apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of CP and AA was determined. Bacterial community composition from ileal digesta was analyzed by Illumina amplicon sequencing and quantitative real-time PCR. Data were analyzed as a 2 × 2 factorial design using the GLIMMIX procedures of SAS. RESULTS: The supplementation with Bacillus spp. did not affect both AID and SID of CP and AA in growing pigs. Moreover, there was no difference in AID of CP and AA between HP and LP diets, but SID of cystine, glutamic acid, glycine, and proline was lower (P < 0.05) in pigs fed the HP diets. The HP diets increased abundance of Bifidobacterium spp. and Lactobacillus spp., (P < 0.05) and by amplicon sequencing the latter was identified as predominant genus in microbiota from HP with Bacillus spp., whereas dietary supplementation of Bacillus spp. increased (P < 0.05) abundance of Roseburia spp.. CONCLUSIONS: The HP diet increased abundance of Lactobacillus spp. and Bifidobacterium spp.. The supplementation of Bacillus spp. resulted in a higher abundance of healthy gut associated bacteria without affecting ileal CP and AA digestibility, whereas LP diet may reduce the flow of undigested protein to the large intestine of pigs.

SELECTION OF CITATIONS
SEARCH DETAIL
...