Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cancer ; 2(1): 66-82, 2021 01.
Article in English | MEDLINE | ID: mdl-33738458

ABSTRACT

Despite objective responses to PARP inhibition and improvements in progression-free survival compared to standard chemotherapy in patients with BRCA-associated triple-negative breast cancer (TNBC), benefits are transitory. Using high dimensional single-cell profiling of human TNBC, here we demonstrate that macrophages are the predominant infiltrating immune cell type in BRCA-associated TNBC. Through multi-omics profiling we show that PARP inhibitors enhance both anti- and pro-tumor features of macrophages through glucose and lipid metabolic reprogramming driven by the sterol regulatory element-binding protein 1 (SREBP-1) pathway. Combined PARP inhibitor therapy with CSF-1R blocking antibodies significantly enhanced innate and adaptive anti-tumor immunity and extends survival in BRCA-deficient tumors in vivo and is mediated by CD8+ T-cells. Collectively, our results uncover macrophage-mediated immune suppression as a liability of PARP inhibitor treatment and demonstrate combined PARP inhibition and macrophage targeting therapy induces a durable reprogramming of the tumor microenvironment, thus constituting a promising therapeutic strategy for TNBC.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Triple Negative Breast Neoplasms , BRCA1 Protein/genetics , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Humans , Macrophages , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment
2.
J Immunother Cancer ; 7(1): 199, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31362778

ABSTRACT

BACKGROUND: Despite major advancements in immunotherapy among a number of solid tumors, response rates among ovarian cancer patients remain modest. Standard treatment for ovarian cancer is still surgery followed by taxane- and platinum-based chemotherapy. Thus, there is an urgent need to develop novel treatment options for clinical translation. METHODS: Our approach was to analyze the effects of standard chemotherapy in the tumor microenvironment of mice harboring orthotopic, syngeneic ID8-Vegf-Defb29 ovarian tumors in order to mechanistically determine a complementary immunotherapy combination. Specifically, we interrogated the molecular and cellular consequences of chemotherapy by analyzing gene expression and flow cytometry data. RESULTS: These data show that there is an immunosuppressive shift in the myeloid compartment, with increased expression of IL-10 and ARG1, but no activation of CD3+ T cells shortly after chemotherapy treatment. We therefore selected immunotherapies that target both the innate and adaptive arms of the immune system. Survival studies revealed that standard chemotherapy was complemented most effectively by a combination of anti-IL-10, 2'3'-cGAMP, and anti-PD-L1. Immunotherapy dramatically decreased the immunosuppressive myeloid population while chemotherapy effectively activated dendritic cells. Together, combination treatment increased the number of activated T and dendritic cells as well as expression of cytotoxic factors. It was also determined that the immunotherapy had to be administered concurrently with the chemotherapy to reverse the acute immunosuppression caused by chemotherapy. Mechanistic studies revealed that antitumor immunity in this context was driven by CD4+ T cells, which acquired a highly activated phenotype. Our data suggest that these CD4+ T cells can kill cancer cells directly via granzyme B-mediated cytotoxicity. Finally, we showed that this combination therapy is also effective at delaying tumor growth substantially in an aggressive model of lung cancer, which is also treated clinically with taxane- and platinum-based chemotherapy. CONCLUSIONS: This work highlights the importance of CD4+ T cells in tumor immunology. Furthermore, the data support the initiation of clinical trials in ovarian cancer that target both innate and adaptive immunity, with a focus on optimizing dosing schedules.


Subject(s)
Adaptive Immunity/drug effects , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Gene Expression Profiling/methods , Immunity, Innate/drug effects , Ovarian Neoplasms/drug therapy , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , B7-H1 Antigen/antagonists & inhibitors , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Carboplatin/administration & dosage , Carboplatin/pharmacology , Combined Modality Therapy , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Interleukin-10/antagonists & inhibitors , Mice , Molecular Targeted Therapy , Nucleotides, Cyclic/administration & dosage , Nucleotides, Cyclic/pharmacology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Paclitaxel/administration & dosage , Paclitaxel/pharmacology , Survival Analysis , Treatment Outcome , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
3.
Sci Transl Med ; 10(433)2018 03 21.
Article in English | MEDLINE | ID: mdl-29563317

ABSTRACT

Cancer immunotherapy can confer durable benefit, but the percentage of patients who respond to this approach remains modest. The ability to concentrate immunostimulatory compounds at the site of disease can overcome local immune tolerance and reduce systemic toxicity. Surgical resection of tumors may improve the efficacy of immunotherapy by removing the concentrated immunosuppressive microenvironment; however, it also removes tumor-specific leukocytes as well as tumor antigens that may be important to establishing antitumor immunity. Moreover, surgery produces a transient immunosuppressive state associated with wound healing that has been correlated with increased metastasis. Using multiple models of spontaneous metastasis, we show that extended release of agonists of innate immunity-including agonists of Toll-like receptor 7/8 (TLR7/8) or stimulator of interferon genes (STING)-from a biodegradable hydrogel placed in the tumor resection site cured a much higher percentage of animals than systemic or local administration of the same therapy in solution. Depletion and neutralization experiments confirmed that the observed prevention of local tumor recurrence and eradication of existing metastases require both the innate and adaptive arms of the immune system. The localized therapy increased the numbers of activated natural killer (NK) cells, dendritic cells, and T cells and induced production of large amounts of type I interferons, thereby converting an immunosuppressive post-resection microenvironment into an immunostimulatory one. The results suggest that the perioperative setting may prove to be a useful context for immunotherapy, particularly when the release of the therapy is extended locally.


Subject(s)
Immunity, Innate/immunology , Immunotherapy/methods , Neoplasm Metastasis/prevention & control , Animals , Dendritic Cells/immunology , Female , Hydrogel, Polyethylene Glycol Dimethacrylate , Killer Cells, Natural/immunology , Mice , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism
4.
Nat Commun ; 8(1): 1747, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170511

ABSTRACT

Targeted delivery of compounds to particular cell subsets can enhance therapeutic index by concentrating their action on the cells of interest. Because attempts to target tumors directly have yielded limited benefit, we instead target endogenous immune cell subsets in the circulation that can migrate actively into tumors. We describe antibody-targeted nanoparticles that bind to CD8+ T cells in the blood, lymphoid tissues, and tumors of mice. PD-1+ T cells are successfully targeted in the circulation and tumor. The delivery of an inhibitor of TGFß signaling to PD-1-expressing cells extends the survival of tumor-bearing mice, whereas free drugs have no effect at such doses. This modular platform also enables PD-1-targeted delivery of a TLR7/8 agonist to the tumor microenvironment, increasing the proportion of tumor-infiltrating CD8+ T cells and sensitizing tumors to subsequent anti-PD-1. Targeted delivery of immunotherapy to defined subsets of endogenous leukocytes may be superior to administration of free drugs.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Neoplasms, Experimental/immunology , Neoplasms, Experimental/therapy , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Cell Line, Tumor , Drug Delivery Systems , Female , Humans , Imidazoles/administration & dosage , Lymphocytes, Tumor-Infiltrating/immunology , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Membrane Glycoproteins/agonists , Mice , Mice, Inbred C57BL , Mice, Knockout , Nanoparticles/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/immunology
5.
Nature ; 520(7547): 358-62, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25855289

ABSTRACT

Cancer metastasis requires that primary tumour cells evolve the capacity to intravasate into the lymphatic system or vasculature, and extravasate into and colonize secondary sites. Others have demonstrated that individual cells within complex populations show heterogeneity in their capacity to form secondary lesions. Here we develop a polyclonal mouse model of breast tumour heterogeneity, and show that distinct clones within a mixed population display specialization, for example, dominating the primary tumour, contributing to metastatic populations, or showing tropism for entering the lymphatic or vasculature systems. We correlate these stable properties to distinct gene expression profiles. Those clones that efficiently enter the vasculature express two secreted proteins, Serpine2 and Slpi, which were necessary and sufficient to program these cells for vascular mimicry. Our data indicate that these proteins not only drive the formation of extravascular networks but also ensure their perfusion by acting as anticoagulants. We propose that vascular mimicry drives the ability of some breast tumour cells to contribute to distant metastases while simultaneously satisfying a critical need of the primary tumour to be fed by the vasculature. Enforced expression of SERPINE2 and SLPI in human breast cancer cell lines also programmed them for vascular mimicry, and SERPINE2 and SLPI were overexpressed preferentially in human patients that had lung-metastatic relapse. Thus, these two secreted proteins, and the phenotype they promote, may be broadly relevant as drivers of metastatic progression in human cancer.


Subject(s)
Breast Neoplasms/blood supply , Breast Neoplasms/pathology , Endothelium, Vascular/pathology , Neoplasm Metastasis/pathology , Animals , Anticoagulants/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Clone Cells/metabolism , Clone Cells/pathology , Disease Models, Animal , Disease Progression , Endothelium, Vascular/metabolism , Extracellular Matrix/metabolism , Female , Gene Expression Profiling , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Neoplasm Metastasis/genetics , Recurrence , Secretory Leukocyte Peptidase Inhibitor/metabolism , Sequence Analysis, DNA , Serpin E2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...