Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Opt Express ; 32(4): 6597-6608, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439359

ABSTRACT

High temporal resolution is essential for ultra-fast pump-probe experiments. Arrival time jitter and drift measurements, as well as their control, become critical especially when combining XUV or X-ray free-electron lasers (FELs) with optical lasers due to the large scale of such facilities and their distinct pulse generation processes. This paper presents the application of a laser pulse arrival time monitor that actively corrects the arrival time of an optical laser relative to the FEL's main optical clock. Combined with post-analysis single pulse jitter correction this new approach improves the temporal resolution for pump-probe experiments significantly. Benchmark measurements on photo-ionization of xenon atoms performed at FLASH beamline FL26, demonstrate a sub-50 fs FWHM overall temporal resolution.

2.
Sci Adv ; 9(47): eadk1482, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37992169

ABSTRACT

The electronic and nuclear dynamics inside molecules are essential for chemical reactions, where different pathways typically unfold on ultrafast timescales. Extreme ultraviolet (XUV) light pulses generated by free-electron lasers (FELs) allow atomic-site and electronic-state selectivity, triggering specific molecular dynamics while providing femtosecond resolution. Yet, time-resolved experiments are either blind to neutral fragments or limited by the spectral bandwidth of FEL pulses. Here, we combine a broadband XUV probe pulse from high-order harmonic generation with an FEL pump pulse to observe dissociation pathways leading to fragments in different quantum states. We temporally resolve the dissociation of a specific O2+ state into two competing channels by measuring the resonances of ionic and neutral fragments. This scheme can be applied to investigate convoluted dynamics in larger molecules relevant to diverse science fields.

3.
Opt Lett ; 48(18): 4753-4756, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37707894

ABSTRACT

Advancing ultrafast high-repetition-rate lasers to shortest pulse durations comprising only a few optical cycles while pushing their energy into the multi-millijoule regime opens a route toward terawatt-class peak powers at unprecedented average power. We explore this route via efficient post-compression of high-energy 1.2 ps pulses from an ytterbium InnoSlab laser to 9.6 fs duration using gas-filled multi-pass cells (MPCs) at a repetition rate of 1 kHz. Employing dual-stage compression with a second MPC stage supporting a close-to-octave-spanning bandwidth enabled by dispersion-matched dielectric mirrors, a record compression factor of 125 is reached at 70% overall efficiency, delivering 6.7 mJ pulses with a peak power of ∼0.3 TW. Moreover, we show that post-compression can improve the temporal contrast at multi-picosecond delay by at least one order of magnitude. Our results demonstrate efficient conversion of multi-millijoule picosecond lasers to high-peak-power few-cycle sources, prospectively opening up new parameter regimes for laser plasma physics, high energy physics, biomedicine, and attosecond science.

4.
Opt Lett ; 48(11): 3055-3058, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262279

ABSTRACT

Frequency combs present a unique tool for high-precision and rapid molecular spectroscopy. Difference frequency generation (DFG) of near-infrared sources is a common approach to generate passively stabilized mid-infrared combs. However, only little attention has been paid so far to precisely measure the coherence properties of such sources. Here, we investigate these using a Raman-soliton based DFG source driven by an Yb:fiber frequency comb. A heterodyne beat between the second harmonic of the phase-locked DFG comb near 4 µm and a 2 µm Tm:fiber frequency comb locked to the same optical reference is performed. Using this method, we measure the relative phase noise power spectral density of both combs. This results in a sub-Hz relative linewidth between the DFG comb and the Tm:fiber comb. We also introduce a new pump/seed delay locking mechanism based on interferometry for long-term stable intensity noise suppression.

5.
Opt Express ; 31(8): 12880-12893, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157438

ABSTRACT

The generation of below-threshold harmonics in gas-jets constitutes a promising path towards optical frequency combs in the vacuum ultra-violet (VUV) spectral range. Of particular interest is the 150 nm range, which can be exploited to probe the nuclear isomeric transition of the Thorium-229 isotope. Using widely available high-power, high-repetition-rate Ytterbium-based laser sources, VUV frequency combs can be generated through the process of below-threshold harmonic generation, in particular 7th harmonic generation of 1030 nm. Knowledge about the achievable efficiencies of the harmonic generation process is crucial for the development of suitable VUV sources. In this work, we measure the total output pulse energies and conversion efficiencies of below-threshold harmonics in gas-jets in a phase-mismatched generation scheme using Argon and Krypton as nonlinear media. Using a 220 fs, 1030 nm source, we reach a maximum conversion efficiency of 1.1 × 10-5 for the 7th harmonic (147 nm) and 0.78 × 10-4 for the 5th harmonic (206 nm). In addition, we characterize the 3rd harmonic of a 178 fs, 515 nm source with a maximum efficiency of 0.3%.

6.
Opt Lett ; 48(4): 984-987, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36790995

ABSTRACT

Few-cycle pulses present an essential tool to track ultrafast dynamics in matter and drive strong field effects. To address photon-hungry applications, high average power lasers are used which, however, cannot directly provide sub-100-fs pulse durations. Post-compression of laser pulses by spectral broadening and dispersion compensation is the most efficient method to overcome this limitation. We present a notably compact setup which turns a 0.1-GW peak power, picosecond burst-mode laser into a 2.9-GW peak power, 8.2-fs source. The 120-fold pulse duration shortening is accomplished in a two-stage hybrid multi-pass, multi-plate compression setup. To our knowledge, neither shorter pulses nor higher peak powers have been reported to-date from bulk multi-pass cells alone, manifesting the power of the hybrid approach. It puts, for instance, compact, cost-efficient, and high repetition rate attosecond sources within reach.

7.
Opt Lett ; 47(4): 822-825, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35167534

ABSTRACT

We demonstrate a 41.6 MHz, 1.3 ps, 140 pJ Ho:fiber oscillator using a nonlinear amplifying loop mirror (NALM) as saturable absorber. The oscillator is constructed entirely with polarization-maintaining (PM) fibers, is tunable with a center wavelength between 2035 nm and 2075 nm, and can be synchronized to an external RF reference. For our application of Ho:YLF amplifier seeding for dielectric electron acceleration, the laser is tuned to 2050 nm and synchronized to a stable RF reference with 45 fs rms timing jitter in the integration interval [10 Hz, 1 MHz]. We show long term synchronized operation and characterize the relative intensity noise (RIN) and timing jitter of the oscillator for two different Tm-fiber pump lasers.

8.
Opt Lett ; 46(18): 4686-4689, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34525082

ABSTRACT

Nonlinear pulse post-compression represents an efficient method for ultrashort, high-quality laser pulse production. The temporal pulse quality is, however, limited by amplitude and phase modulations intrinsic to post-compression. We here characterize in frequency and time domain with high dynamic range individual post-compressed pulses within laser bursts comprising 100-kHz-rate pulse trains. We spectrally broaden 730 fs, 3.2 mJ pulses from a Yb:YAG laser in a gas-filled multi-pass cell and post-compress them to 56 fs. The pulses exhibit a nearly constant energy content of 78% in the main peak over the burst plateau, which is close to the theoretical limit. Our results demonstrate attractive pulse characteristics, making multi-pass post-compressed lasers very applicable for pump-probe spectroscopy at, e.g., free-electron lasers or as efficient drivers for secondary frequency conversion stages.

9.
J Synchrotron Radiat ; 28(Pt 1): 36-43, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33399550

ABSTRACT

This paper reports on nonlinear spectral broadening of 1.1 ps pulses in a gas-filled multi-pass cell to generate sub-100 fs optical pulses at 1030 nm and 515 nm at pulse energies of 0.8 mJ and 225 µJ, respectively, for pump-probe experiments at the free-electron laser FLASH. Combining a 100 kHz Yb:YAG laser with 180 W in-burst average power and a post-compression platform enables reaching simultaneously high average powers and short pulse durations for high-repetition-rate FEL pump-probe experiments.

10.
Opt Express ; 28(13): 18946-18968, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672183

ABSTRACT

We present a flexible all-polarization-maintaining (PM) mode-locked ytterbium (Yb):fiber laser based on a nonlinear amplifying loop mirror (NALM). In addition to providing detailed design considerations, we discuss the different operation regimes accessible by this versatile laser architecture and experimentally analyze five representative mode-locking states. These five states were obtained in a 78-MHz configuration at different intracavity group delay dispersion (GDD) values ranging from anomalous (-0.035 ps2) to normal (+0.015 ps2). We put a particular focus on the characterization of the intensity noise as well as the free-running linewidth of the carrier-envelope-offset (CEO) frequency as a function of the different operation regimes. We observe that operation points far from the spontaneous emission peak of Yb (∼1030 nm) and close to zero intracavity dispersion can be found, where the influence of pump noise is strongly suppressed. For such an operation point, we show that a CEO linewidth of less than 10-kHz at 1 s integration can be obtained without any active stabilization.

11.
Opt Lett ; 45(9): 2572-2575, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32356848

ABSTRACT

In this work, we demonstrate postcompression of 1.2 ps laser pulses to 13 fs via gas-based multipass spectral broadening. Our results yield a single-stage compression factor of about 40 at 200 W in-burst average power and a total compression factor >90 at reduced power. The employed scheme represents a route toward compact few-cycle sources driven by industrial-grade Yb:YAG lasers at high average power.

12.
Opt Lett ; 45(8): 2255-2258, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32287207

ABSTRACT

We report on a compact mid-infrared laser architecture, comprising a chain of $ {\rm ZnGeP}_2 $ZnGeP2-based optical parametric amplifiers (OPAs), which afford a higher energy yield ($ \mathbin{\lower.3ex\hbox{$\buildrel \lt \over{\smash{\scriptstyle\sim}\vphantom{_x}}$}} 60\;\unicode{x00B5} {\rm J} $∼x<60µJ at 1 kHz) compared to most conventional OPA gain media transparent in the 2-8-µm wavelength range. Specifically, our OPA scheme allows ready tunability in the molecular fingerprint regime and is tailored for strong-field excitation and coherent control of both stretch and bend (or torsional) vibrational modes in molecules. The OPAs are pumped and directly seeded (via supercontinuum generation) by a 2-µm, 3-ps Ho:YLF regenerative amplifier. The compressibility of the OPA output is demonstrated by a representative measurement of the near-Gaussian temporal profile of a dispersion-compensated 105-fs idler pulse at a central wavelength of 5.1 µm, corresponding to ${\sim}6 $∼6 optical cycles. Detailed numerical simulations closely corroborate the experimental measurements, providing a benchmark and a platform to further explore the parameter space for future design, optimization, and implementation of high-energy, ultrafast, mid-infrared laser schemes.

13.
Opt Lett ; 45(7): 1914-1917, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236031

ABSTRACT

We experimentally demonstrate in a difference-frequency generation mid-infrared frequency comb source the effect of temporal overlap between pump and signal pulses on the relative intensity noise (RIN) of the idler pulse. When scanning the temporal delay between our 130 fs long signal and pump pulses, we observe a RIN minimum with a 3 dB width of 20 fs delay and a RIN increase of 20 dB in 40 fs delay at the edges of this minimum. We also demonstrate active long-term stabilization of the mid-infrared frequency comb source to the temporal overlap setting corresponding to the lowest RIN operation point by an online RIN detector and active feedback control of the pump-signal pulse delay. This active stabilization setup allows us to dramatically increase the signal-to-noise ratio of mid-infrared absorption spectra.

14.
Sci Rep ; 10(1): 6867, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32322051

ABSTRACT

Ultrafast measurements in the extreme ultraviolet (XUV) spectral region targeting femtosecond timescales rely until today on two complementary XUV laser sources: free electron lasers (FELs) and high-harmonic generation (HHG) based sources. The combination of these two source types was until recently not realized. The complementary properties of both sources including broad bandwidth, high pulse energy, narrowband tunability and femtosecond timing, open new opportunities for two-color pump-probe studies. Here we show first results from the commissioning of a high-harmonic beamline that is fully synchronized with the free-electron laser FLASH, installed at beamline FL26 with permanent end-station including a reaction microscope (REMI). An optical parametric amplifier synchronized with the FEL burst mode drives the HHG process. First commissioning tests including electron momentum measurements using REMI, demonstrate long-term stability of the HHG source over more than 14 hours. This realization of the combination of these light sources will open new opportunities for time-resolved studies targeting different science cases including core-level ionization dynamics or the electron dynamics during the transformation of a molecule within a chemical reaction probed on femtosecond timescales in the ultraviolet to soft X-ray spectral region.

15.
Opt Express ; 27(20): 28062-28074, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684565

ABSTRACT

We demonstrate dual-comb generation from an all-polarization-maintaining dual-color ytterbium (Yb) fiber laser. Two pulse trains with center wavelengths at 1030 nm and 1060 nm respectively are generated within the same laser cavity with a repetition rate around 77 MHz. Dual-color operation is induced using a tunable mechanical spectral filter, which cuts the gain spectrum into two spectral regions that can be independently mode-locked. Spectral overlap of the two pulse trains is achieved outside the laser cavity by amplifying the 1030-nm pulses and broadening them in a nonlinear fiber. Spatially overlapping the two arms on a simple photodiode then generates a down-converted radio frequency comb. The difference in repetition rates between the two pulse trains and hence the line spacing of the down-converted comb can easily be tuned in this setup. This feature allows for a flexible adjustment of the tradeoff between non-aliasing bandwidth vs. measurement time in spectroscopy applications. Furthermore, we show that by fine-tuning the center-wavelengths of the two pulse trains, we are able to shift the down-converted frequency comb along the radio-frequency axis. The usability of this dual-comb setup is demonstrated by measuring the transmission of two different etalons while the laser is completely free-running.

16.
Opt Lett ; 44(9): 2236-2239, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31042192

ABSTRACT

Due to their unique properties such as transparency, tunability, nonlinearity, and dispersion flexibility, liquid-core fibers represent an important approach for future coherent mid-infrared light sources. However, the damage thresholds of these fibers are largely unexplored. Here we report on the generation of soliton-based supercontinua in carbon disulfide (CS2) liquid-core fibers at average power levels as high as 0.5 W operating stably for a long term (>70 h) without any kind of degradation or damage. Additionally, we also show stable high-power pulse transmission through liquid-core fibers exceeding 1 W of output average power for both CS2 and tetrachloroethylene as core materials.

17.
Opt Lett ; 43(5): 1059-1062, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29489780

ABSTRACT

Synchronously pumped optical parametric oscillators (OPOs) are important tools for frequency comb (FC) generation in the mid-IR spectral range, where few suitable laser gain materials exist. For degenerate OPOs, self-phase-locking to the pump FC has been demonstrated. Here, we present a phase noise study of the carrier envelope offset frequency, revealing a -6 dB reduction compared to the pump FC over a wide Fourier frequency range. These results demonstrate that a degenerate OPO can be an ideal coherent frequency divider without any excess noise.

18.
Opt Lett ; 42(24): 5266-5269, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29240189

ABSTRACT

We present an experimental and numerical study on the spectrally resolved pump-to-output intensity noise coupling in soliton fiber oscillators. In our study, we observe a strong pump noise coupling to the Kelly sidebands, while the coupling to the soliton pulse is damped. This behavior is observed in erbium-doped as well as holmium-doped fiber oscillators and confirmed by numerical modeling. It can be seen as a general feature of laser oscillators in which soliton pulse formation is dominant. We show that spectral blocking of the Kelly sidebands outside the laser cavity can improve the intensity noise performance of the laser dramatically.

19.
Opt Lett ; 41(15): 3435-8, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27472587

ABSTRACT

We demonstrate an experimental technique for both transverse and longitudinal characterization of bunched femtosecond free electron beams. The operation principle is based on monitoring of the current of electrons that obtained an energy gain during the interaction with the synchronized optical near-field wave excited by femtosecond laser pulses. The synchronous accelerating/decelerating fields confined to the surface of a silicon nanostructure are characterized using a highly focused sub-relativistic electron beam. Here the transverse spatial resolution of 450 nm and femtosecond temporal resolution of 480 fs (sub-optical-cycle temporal regime is briefly discussed) achievable by this technique are demonstrated.

20.
Opt Express ; 24(9): 9905-21, 2016 May 02.
Article in English | MEDLINE | ID: mdl-27137602

ABSTRACT

We present a new chromatic numerical approach to simulate the amplification of laser pulses in multipass laser amplifiers. This enables studies on spectral effects such as gain narrowing and spectral shaping with optical elements expressed by a transmission transfer function. We observe good agreement between our simulations and measurements with a Ho:YLF regenerative amplifier (RA). To demonstrate the capabilities of our simulation model, we numerically integrate an intra-cavity etalon in this laser and find optimum etalon parameters that enhance the peak power of the output pulses up to 65%.

SELECTION OF CITATIONS
SEARCH DETAIL
...