Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888340

ABSTRACT

The MRE11/RAD50/NBS1 (MRN) complex plays critical roles in cellular responses to DNA double-strand breaks. MRN is involved in end binding and processing, and it also induces cell cycle checkpoints by activating the ataxia-telangiectasia mutated (ATM) protein kinase. Hypomorphic pathogenic variants in the MRE11, RAD50, or NBS1 genes cause autosomal recessive genome instability syndromes featuring variable degrees of dwarfism, neurological defects, anemia, and cancer predisposition. Disease-associated MRN alleles include missense and nonsense variants, and many cause reduced protein levels of the entire MRN complex. However, the dramatic variability in the disease manifestation of MRN pathogenic variants is not understood. We sought to determine if low protein levels are a significant contributor to disease sequelae and therefore generated a transgenic murine model expressing MRE11 at low levels. These mice display dramatic phenotypes including small body size, severe anemia, and impaired DNA repair. We demonstrate that, distinct from ataxia telangiectasia-like disorder caused by MRE11 pathogenic missense or nonsense variants, mice and cultured cells expressing low MRE11 levels do not display the anticipated defects in ATM activation. Our findings indicate that ATM signaling can be supported by very low levels of the MRN complex and imply that defective ATM activation results from perturbation of MRN function caused by specific hypomorphic disease mutations. These distinct phenotypic outcomes underline the importance of understanding the impact of specific pathogenic MRE11 variants, which may help direct appropriate early surveillance for patients with these complicated disorders in a clinical setting.

2.
Sci Rep ; 11(1): 4268, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608602

ABSTRACT

Ataxia-telangiectasia (A-T) is an autosomal recessive, multisystem disorder characterized by cerebellar degeneration, cancer predisposition, and immune system defects. A major cause of mortality in A-T patients is severe pulmonary disease; however, the underlying causes of the lung complications are poorly understood, and there are currently no curative therapeutic interventions. In this study, we examined the lung phenotypes caused by ATM-deficient immune cells using a mouse model of A-T pulmonary disease. In response to acute lung injury, ATM-deficiency causes decreased survival, reduced blood oxygen saturation, elevated neutrophil recruitment, exaggerated and prolonged inflammatory responses and excessive lung injury compared to controls. We found that ATM null bone marrow adoptively transferred to WT recipients induces similar phenotypes that culminate in impaired lung function. Moreover, we demonstrated that activated ATM-deficient macrophages exhibit significantly elevated production of harmful reactive oxygen and nitrogen species and pro-inflammatory cytokines. These findings indicate that ATM-deficient immune cells play major roles in causing the lung pathologies in A-T. Based on these results, we examined the impact of inhibiting the aberrant inflammatory responses caused by ATM-deficiency with reparixin, a CXCR1/CXCR2 chemokine receptor antagonist. We demonstrated that reparixin treatment reduces neutrophil recruitment, edema and tissue damage in ATM mutant lungs. Thus, our findings indicate that targeted inhibition of CXCR1/CXCR2 attenuates pulmonary phenotypes caused by ATM-deficiency and suggest that this treatment approach represents a viable therapeutic strategy for A-T lung disease.


Subject(s)
Ataxia Telangiectasia/complications , Ataxia Telangiectasia/genetics , Biomarkers , Disease Susceptibility , Inflammation Mediators/metabolism , Lung Diseases/etiology , Lung Diseases/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Ataxia Telangiectasia Mutated Proteins/deficiency , Ataxia Telangiectasia Mutated Proteins/genetics , Bleomycin/adverse effects , Cytokines/metabolism , DNA Damage , DNA Repair , Disease Models, Animal , Lung Diseases/mortality , Lung Diseases/pathology , Mice , Phenotype , Prognosis
3.
Sci Rep ; 8(1): 10121, 2018 07 04.
Article in English | MEDLINE | ID: mdl-29973640

ABSTRACT

Ataxia-telangiectasia (AT) and related disorders feature cancer predisposition, neurodegeneration, and immunodeficiency resulting from failure to respond to DNA damage. Hypomorphic mutations in MRE11 cause an AT-like disorder (ATLD) with variable clinical presentation. We have sought to understand how diverse MRE11 mutations may provide unique therapeutic opportunities, and potentially correlate with clinical variability. Here we have undertaken studies of an MRE11 splice site mutation that was found in two ATLD siblings that died of pulmonary adenocarcinoma at the young ages of 9 and 16. The mutation, termed MRE11 alternative splice mutation (MRE11ASM), causes skipping of a highly conserved exon while preserving the protein's open reading frame. A new mouse model expressing Mre11ASM from the endogenous locus demonstrates that the protein is present at very low levels, a feature in common with the MRE11ATLD1 mutant found in other patients. However, the mechanisms causing low protein levels are distinct. MRE11ASM is mislocalized to the cytoplasm, in contrast to MRE11ATLD1, which remains nuclear. Strikingly, MRE11ASM mislocalization is corrected by inhibition of the proteasome, implying that the protein undergoes strict protein quality control in the nucleus. These findings raise the prospect that inhibition of poorly understood nuclear protein quality control mechanisms might have therapeutic benefit in genetic disorders causing cytoplasmic mislocalization.


Subject(s)
Alternative Splicing , Ataxia Telangiectasia/genetics , Cell Nucleus/metabolism , MRE11 Homologue Protein/metabolism , Active Transport, Cell Nucleus/drug effects , Animals , Ataxia Telangiectasia/pathology , Cells, Cultured , MRE11 Homologue Protein/genetics , Mice , Mice, Inbred C57BL , Mutation , Proteasome Inhibitors/pharmacology
4.
5.
PLoS Genet ; 12(11): e1006410, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27832076

ABSTRACT

A proportion of homologous recombination (HR) events in mammalian cells resolve by "long tract" gene conversion, reflecting copying of several kilobases from the donor sister chromatid prior to termination. Cells lacking the major hereditary breast/ovarian cancer predisposition genes, BRCA1 or BRCA2, or certain other HR-defective cells, reveal a bias in favor of long tract gene conversion, suggesting that this aberrant HR outcome might be connected with genomic instability. If termination of gene conversion occurs in regions lacking homology with the second end of the break, the normal mechanism of HR termination by annealing (i.e., homologous pairing) is not available and termination must occur by as yet poorly defined non-canonical mechanisms. Here we use a previously described HR reporter to analyze mechanisms of non-canonical termination of long tract gene conversion in mammalian cells. We find that non-canonical HR termination can occur in the absence of the classical non-homologous end joining gene XRCC4. We observe obligatory use of microhomology (MH)-mediated end joining and/or nucleotide addition during rejoining with the second end of the break. Notably, non-canonical HR termination is associated with complex breakpoints. We identify roles for homology-mediated template switching and, potentially, MH-mediated template switching/microhomology-mediated break-induced replication, in the formation of complex breakpoints at sites of non-canonical HR termination. This work identifies non-canonical HR termination as a potential contributor to genomic instability and to the formation of complex breakpoints in cancer.


Subject(s)
Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Homologous Recombination/genetics , Ovarian Neoplasms/genetics , Animals , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Chromatids/genetics , DNA End-Joining Repair/genetics , Female , Gene Conversion/genetics , Genomic Instability/genetics , Humans , Mice , Mouse Embryonic Stem Cells , Ovarian Neoplasms/pathology
6.
Nat Struct Mol Biol ; 22(9): 736-43, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26280532

ABSTRACT

Two kinases, ATM and DNA-PKcs, control rapid responses to DNA double-strand breaks (DSBs). The paradigm for ATM control is recruitment and activation by the Mre11-Rad50-NBS1 (MRN) sensor complex, whereas DNA-PKcs requires the sensor Ku (Ku70-Ku80). Using mouse cells containing targeted mutant alleles of Mre11 (Mre11a) and/or Ku70 (Xrcc6), together with pharmacologic kinase inhibition, we demonstrate that ATM can be activated by DSBs in the absence of MRN. When MRN is deficient, DNA-PKcs efficiently substitutes for ATM in facilitating local chromatin responses. In the absence of both MRN and Ku, ATM is recruited to chromatin, where it phosphorylates H2AX and triggers the G2-M cell-cycle checkpoint, but the DNA-repair functions of MRN are not restored. These results suggest that, in contrast to straightforward recruitment and activation by MRN, a complex interplay between sensors has a substantial role in ATM control.


Subject(s)
DNA Breaks, Double-Stranded , DNA/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Mice , Protein Binding
7.
PLoS One ; 7(11): e49211, 2012.
Article in English | MEDLINE | ID: mdl-23209566

ABSTRACT

Recruitment of 53BP1 to chromatin flanking double strand breaks (DSBs) requires γH2AX/MDC1/RNF8-dependent ubiquitination of chromatin and interaction of 53BP1 with histone H4 methylated on lysine 20 (H4K20me). Several histone methyltransferases have been implicated in 53BP1 recruitment, but their quantitative contributions to the 53BP1 response are unclear. We have developed a multi-photon laser (MPL) system to target DSBs to subfemtoliter nuclear volumes and used this to mathematically model DSB response kinetics of MDC1 and of 53BP1. In contrast to MDC1, which revealed first order kinetics, the 53BP1 MPL-DSB response is best fitted by a Gompertz growth function. The 53BP1 MPL response shows the expected dependency on MDC1 and RNF8. We determined the impact of altered H4K20 methylation on 53BP1 MPL response kinetics in mouse embryonic fibroblasts (MEFs) lacking key H4K20 histone methyltransferases. This revealed no major requirement for the known H4K20 dimethylases Suv4-20h1 and Suv4-20h2 in 53BP1 recruitment or DSB repair function, but a key role for the H4K20 monomethylase, PR-SET7. The histone methyltransferase MMSET/WHSC1 has recently been implicated in 53BP1 DSB recruitment. We found that WHSC1 homozygous mutant MEFs reveal an alteration in balance of H4K20 methylation patterns; however, 53BP1 DSB responses in these cells appear normal.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , Histones/metabolism , Lysine/metabolism , Animals , Cell Line , DNA Breaks, Double-Stranded/radiation effects , DNA Repair , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Humans , Kinetics , Lasers/adverse effects , Methylation , Mice , Protein Transport , Tumor Suppressor p53-Binding Protein 1 , Ubiquitin-Protein Ligases/metabolism
8.
Biochem J ; 423(2): 157-68, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19772495

ABSTRACT

DNA chromosomal DSBs (double-strand breaks) are potentially hazardous DNA lesions, and their accurate repair is essential for the successful maintenance and propagation of genetic information. Two major pathways have evolved to repair DSBs: HR (homologous recombination) and NHEJ (non-homologous end-joining). Depending on the context in which the break is encountered, HR and NHEJ may either compete or co-operate to fix DSBs in eukaryotic cells. Defects in either pathway are strongly associated with human disease, including immunodeficiency and cancer predisposition. Here we review the current knowledge of how NHEJ and HR are controlled in somatic mammalian cells, and discuss the role of the chromatin context in regulating each pathway. We also review evidence for both co-operation and competition between the two pathways.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/physiology , Eukaryotic Cells/metabolism , Animals , Humans , Mammals/genetics , Models, Biological , Recombination, Genetic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...