Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
3.
Epidemics ; 33: 100400, 2020 12.
Article in English | MEDLINE | ID: mdl-33130412

ABSTRACT

INTRODUCTION: High quality epidemic forecasting and prediction are critical to support response to local, regional and global infectious disease threats. Other fields of biomedical research use consensus reporting guidelines to ensure standardization and quality of research practice among researchers, and to provide a framework for end-users to interpret the validity of study results. The purpose of this study was to determine whether guidelines exist specifically for epidemic forecast and prediction publications. METHODS: We undertook a formal systematic review to identify and evaluate any published infectious disease epidemic forecasting and prediction reporting guidelines. This review leveraged a team of 18 investigators from US Government and academic sectors. RESULTS: A literature database search through May 26, 2019, identified 1467 publications (MEDLINE n = 584, EMBASE n = 883), and a grey-literature review identified a further 407 publications, yielding a total 1777 unique publications. A paired-reviewer system screened in 25 potentially eligible publications, of which two were ultimately deemed eligible. A qualitative review of these two published reporting guidelines indicated that neither were specific for epidemic forecasting and prediction, although they described reporting items which may be relevant to epidemic forecasting and prediction studies. CONCLUSIONS: This systematic review confirms that no specific guidelines have been published to standardize the reporting of epidemic forecasting and prediction studies. These findings underscore the need to develop such reporting guidelines in order to improve the transparency, quality and implementation of epidemic forecasting and prediction research in operational public health.


Subject(s)
Disease Notification/methods , Epidemics , Communicable Diseases , Disease Notification/statistics & numerical data , Forecasting , Guidelines as Topic , Humans , Public Health
4.
MSMR ; 26(7): 18-23, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31347372

ABSTRACT

The Naval Infectious Diseases Diagnostic Laboratory (NIDDL) serves as a reference clinical laboratory that supports Department of Defense (DoD) military treatment facilities worldwide in the detection and identification of high-risk and emerging infectious diseases. Since the emergence of Zika virus (ZIKV) in the Western Hemisphere in 2016, the NIDDL has been a central hub for ZIKV testing for DoD personnel and beneficiaries. Samples collected during patients' clinical evaluations were screened for evidence of possible exposure to ZIKV using molecular and serological methods. An in-house ZIKV plaque reduction neutralization test was used to confirm the presence of ZIKV immunoglobulin M antibody. Of 1,420 individuals tested, ZIKV infection was confirmed by quantitative real-time polymerase chain reaction (PCR) assay in 11 (0.8%); an additional 26 recent flaviviral infections (possibly ZIKV) were identified based on serology (1.8%). These findings contribute to the understanding of the burden of ZIKV infections among DoD personnel and beneficiaries and highlight the role of the NIDDL in clinical diagnosis during emerging infectious disease outbreaks.


Subject(s)
Zika Virus Infection/epidemiology , Adult , Female , Humans , Male , Military Personnel/statistics & numerical data , Pregnancy , Real-Time Polymerase Chain Reaction/methods , United States/epidemiology , Zika Virus/isolation & purification , Zika Virus Infection/blood , Zika Virus Infection/transmission , Zika Virus Infection/urine
6.
Virol J ; 14(1): 25, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28173871

ABSTRACT

BACKGROUND: Licensed antiviral therapeutics and vaccines to protect against eastern equine encephalitis virus (EEEV) in humans currently do not exist. Animal models that faithfully recapitulate the clinical characteristics of human EEEV encephalitic disease, including fever, drowsiness, anorexia, and neurological signs such as seizures, are needed to satisfy requirements of the Food and Drug Administration (FDA) for clinical product licensing under the Animal Rule. METHODS: In an effort to meet this requirement, we estimated the median lethal dose and described the pathogenesis of aerosolized EEEV in the common marmoset (Callithrix jacchus). Five marmosets were exposed to aerosolized EEEV FL93-939 in doses ranging from 2.4 × 101 PFU to 7.95 × 105 PFU. RESULTS: The median lethal dose was estimated to be 2.05 × 102 PFU. Lethality was observed as early as day 4 post-exposure in the highest-dosed marmoset but animals at lower inhaled doses had a protracted disease course where humane study endpoint was not met until as late as day 19 post-exposure. Clinical signs were observed as early as 3 to 4 days post-exposure, including fever, ruffled fur, decreased grooming, and leukocytosis. Clinical signs increased in severity as disease progressed to include decreased body weight, subdued behavior, tremors, and lack of balance. Fever was observed as early as day 2-3 post-exposure in the highest dose groups and hypothermia was observed in several cases as animals became moribund. Infectious virus was found in several key tissues, including brain, liver, kidney, and several lymph nodes. Clinical hematology results included early neutrophilia, lymphopenia, and thrombocytopenia. Key pathological changes included meningoencephalitis and retinitis. Immunohistochemical staining for viral antigen was positive in the brain, retina, and lymph nodes. More intense and widespread IHC labeling occurred with increased aerosol dose. CONCLUSION: We have estimated the medial lethal dose of aerosolized EEEV and described the pathology of clinical disease in the marmoset model. The results demonstrate that the marmoset is an animal model suitable for emulation of human EEEV disease in the development of medical countermeasures.


Subject(s)
Aerosols , Callithrix/virology , Disease Models, Animal , Encephalitis Virus, Eastern Equine/pathogenicity , Encephalomyelitis, Eastern Equine/veterinary , Encephalomyelitis, Eastern Equine/virology , Animals , Blood Chemical Analysis , Brain/pathology , Brain/virology , Encephalomyelitis, Eastern Equine/pathology , Encephalomyelitis, Eastern Equine/physiopathology , Female , Immunity , Immunohistochemistry , Kidney/virology , Lethal Dose 50 , Liver/virology , Lymph Nodes/virology , Male , RNA, Viral/analysis , RNA, Viral/isolation & purification , Survival Analysis , Viral Load , Viral Plaque Assay
7.
Clin Chem ; 61(11): 1391-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26384353

ABSTRACT

BACKGROUND: The Department of Defense (DoD) and the Food and Drug Administration (FDA) have collaboratively worked on a pre-Emergency Use Authorization (pre-EUA) process for in vitro diagnostic (IVD) devices, using FDA's regulatory flexibilities under the EUA authorities. The pre-EUA process enables FDA review of data in anticipation of a request for an EUA, advancing US government public health emergency preparedness efforts. METHODS: The IVD device developed to detect Escherichia coli O104:H4, for which an EUA has not been issued, serves as an example to illustrate that process. Specifically, DoD designed real-time PCR assays to target the virulent E. coli strain O104:H4 (etiological agent of the 2011 German outbreak) including: fliC (flagellin), Agg3C (AAF), and rfb (wbwC) on the basis of the published sequences. RESULTS: After development and optimization of these 3 specific assays, a defined protocol was followed to determine and document the sensitivity and specificity of each assay analytically. CONCLUSIONS: FDA reviewed these data and returned commentary on additional required experiments to complete the pre-EUA process and expedite the use of the device should there be an emergency need for an IVD device to detect this virulent E. coli strain before such a test is cleared by FDA.


Subject(s)
Escherichia coli Infections/diagnosis , Escherichia coli Infections/microbiology , Escherichia coli/isolation & purification , Real-Time Polymerase Chain Reaction/instrumentation , DNA, Bacterial/genetics , Disease Outbreaks , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Fimbriae Proteins/genetics , Flagellin/genetics , Galactosyltransferases/genetics , Humans , Hydrolysis , Limit of Detection , Real-Time Polymerase Chain Reaction/methods , Sequence Analysis, DNA , United States , United States Food and Drug Administration
8.
Mol Cell Probes ; 28(5-6): 288-95, 2014.
Article in English | MEDLINE | ID: mdl-25261118

ABSTRACT

Virulent isolates of three pathogenic Yersinia species (Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica) harbor a 102-kb chromosomal region which encodes elements critical for virulence. A 35-kb high pathogenicity island is contained in this region, is a known virulence determinant, contains irp1 and irp2 iron-regulating genes. An additional segment, the 68-kb high pathogenicity island, contains genetic elements responsible for conferring the Y. pestis pigmentation phenotype on Congo red agar at 28 °C. Collectively, these contiguous segments are referred to as the pigmentation (pgm) locus, the absence of which results in strain attenuation and exemption from CDC Select Agent status. In this study, we developed a set of four real-time PCR assays to detect the presence or absence of multiple virulence genes located within this region. Specifically, we designed TaqMan(®) PCR assays to individually detect three hemin storage genes (hmsH, hmsF, and hmsR) which are genetic elements that confer the pigmentation phenotype, as well as the iron-regulating status of 25 Y. pestis isolates (representing 23 different strains), thus establishing a molecular based assay capable of determining the pgm status of candidate Y. pestis isolates. Included in the validation process, was a comparison of these real-time PCR assays and newly developed conventional PCR assays targeting much larger areas of the 102-kb region (including one assay spanning hmsR and hmsF, one spanning hmsH and hsmF, one targeting hmsF, and one targeting irp2). There was high concordance between the conventional and real-time PCR assays for all Y. pestis strains tested. The results from the comparative analysis document the specificity and sensitivity of the real-time PCR assays and further solidify the ostensible benefits of real-time PCR over conventional PCR.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Iron Regulatory Protein 2/genetics , Membrane Proteins/genetics , Real-Time Polymerase Chain Reaction/methods , Yersinia pestis/genetics , Chromosomes, Bacterial/genetics , Gene Order , Polymerase Chain Reaction/methods , Reproducibility of Results , Virulence/genetics , Yersinia pestis/pathogenicity
9.
J Mol Diagn ; 11(5): 464-71, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19644019

ABSTRACT

The relationship of mucoviscosity-associated (magA) and/or regulator of mucoid phenotype (rmpA) genes to the Klebsiella pneumoniae hypermucoviscosity (HMV) phenotype has been reported. We previously demonstrated that rmpA+ K. pneumoniae can cause serious disease in African green monkeys and isolated rmpA+ and magA+ HMV K. pneumoniae from other species of non-human primates. To rapidly screen African green monkeys/non-human primates for these infections, we developed three real-time PCR assays. The first was K. pneumoniae-specific, targeting the khe gene, while the others targeted rmpA and magA. Primer Express 2 was used with the three K. pneumoniae genes to generate sequence-specific TaqMan/TaqMan-Minor Groove Binder assays. Oral/rectal swabs and necropsy samples were collected; swabs were used for routine culture and DNA extraction. K. pneumoniae colonies were identified on the Vitek 2 with DNA tested using the K. pneumoniae-specific assays. Testing of 45 African green monkeys resulted in 19 khe+ samples from 14 animals with none positive for either rmpA or magA. Of these 19 khe+ samples, five were culture-positive, but none were HMV "string test"-positive. Subsequent testing of 307 non-human primates resulted in 64 HMV K. pneumoniae isolates of which 42 were rmpA+ and 15 were magA+. Non-human primate testing at the U.S. Army Medical Research Institute of Infectious Diseases demonstrated the ability to screen both live and necropsied animals for K. pneumoniae by culture and real-time PCR to determine HMV genotype.


Subject(s)
Bacterial Proteins/genetics , Klebsiella Infections/diagnosis , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Polymerase Chain Reaction/methods , Animals , Chlorocebus aethiops , Klebsiella pneumoniae/isolation & purification , Phenotype , Primates , Viscosity
10.
Clin Chem ; 52(1): 141-5, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16391330

ABSTRACT

BACKGROUND: Rapid detection of biological threat agents is critical for timely therapeutic administration. Fluorogenic PCR provides a rapid, sensitive, and specific tool for molecular identification of these agents. We compared the performance of assays for 7 biological threat agents on the Idaho Technology, Inc. R.A.P.I.D., the Roche LightCycler, and the Cepheid Smart Cycler. METHODS: Real-time PCR primers and dual-labeled fluorogenic probes were designed to detect Bacillus anthracis, Brucella species, Clostridium botulinum, Coxiella burnetii, Francisella tularensis, Staphylococcus aureus, and Yersinia pestis. DNA amplification assays were optimized by use of Idaho Technology buffers and deoxynucleotide triphosphates supplemented with Invitrogen Platinum Taq DNA polymerase, and were subsequently tested for sensitivity and specificity on the R.A.P.I.D., the LightCycler, and the Smart Cycler. RESULTS: Limit of detection experiments indicated that assay performance was comparable among the platforms tested. Exclusivity and inclusivity testing with a general bacterial nucleic acid cross-reactivity panel containing 60 DNAs and agent-specific panels containing nearest neighbors for the organisms of interest indicated that all assays were specific for their intended targets. CONCLUSION: With minor supplementation, such as the addition of Smart Cycler Additive Reagent to the Idaho Technology buffers, assays for DNA templates from biological threat agents demonstrated similar performance, sensitivity, and specificity on all 3 platforms.


Subject(s)
Bacteria/classification , Biological Warfare , Bacteria/genetics , Bacteriological Techniques , DNA, Bacterial/genetics , Fluorometry , Polymerase Chain Reaction/methods , Sensitivity and Specificity
11.
Mol Cell Probes ; 19(1): 51-9, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15652220

ABSTRACT

Development of rapid amplification assays for the detection and identification of biological threat agents has become a focus of diagnostic efforts in recent years. The use of real-time PCR assays as diagnostic tools depends upon two critical processes. First, nucleic acid purification must provide template that is both amplifiable and free of PCR inhibitors. Second, the assays themselves must be sensitive and specific for their nucleic acid targets. A differentiation must be made between results achieved due to the lack of target nucleic acid (true negatives) and those produced due to the inability to amplify target DNA (false negatives) so confidence in negative reactions is possible. False negatives can occur when inhibitors are present in the sample being tested, especially if clinical samples such as blood are analyzed. To address the problem of detecting inhibition in purified nucleic acids, an exogenous internal positive control (IPC) based on Taqman chemistry was developed. A previously optimized assay was cloned and the primer and probe sites were mutated to produce novel sequences with no known homology to published sequence data. The IPC was sensitive to a variety of inhibitors, including hemoglobin, heparin, EDTA, humic acids, and fulvic acid. It was also equally sensitive to inhibition when labeled with either 6FAM or ROX dyes. In addition, the IPC was successfully multiplexed with agent specific assays without any loss in their sensitivity. The designed IPC assay has proven to be an effective tool for monitoring inhibitors of PCR and builds confidence in negative results obtained with agent specific assays.


Subject(s)
Polymerase Chain Reaction/standards , Reagent Kits, Diagnostic/standards , False Negative Reactions , Methods , Mutagenesis, Site-Directed , Reference Standards , Sensitivity and Specificity , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...