Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Publication year range
1.
IUBMB Life ; 74(8): 826-841, 2022 08.
Article in English | MEDLINE | ID: mdl-35836360

ABSTRACT

Cholesterol is a ubiquitous and essential component of cellular membranes, as it regulates membrane structure and fluidity. Furthermore, cholesterol serves as a precursor for steroid hormones, oxysterol, and bile acids, that are essential for maintaining many of the body's metabolic processes. The biosynthesis and excretion of cholesterol is tightly regulated in order to maintain homeostasis. Although virtually all cells have the capacity to make cholesterol, the liver and brain are the two main organs producing cholesterol in mammals. Once produced, cholesterol is transported in the form of lipoprotein particles to other cell types and tissues. Upon formation of the blood-brain barrier (BBB) during embryonic development, lipoproteins cannot move between the central nervous system (CNS) and the rest of the body. As such, cholesterol biosynthesis and metabolism in the CNS operate autonomously without input from the circulation system in normal physiological conditions. Nevertheless, similar regulatory mechanisms for maintaining cholesterol homeostasis are utilized in both the CNS and peripheral systems. Here, we discuss the functions and metabolism of cholesterol in the CNS. We further focus on how different CNS cell types contribute to cholesterol metabolism, and how ApoE, the major CNS apolipoprotein, is involved in normal and pathophysiological functions. Understanding these basic mechanisms will aid our ability to elucidate how CNS cholesterol dysmetabolism contributes to neurogenerative diseases.


Subject(s)
Central Nervous System , Lipid Metabolism , Animals , Biological Transport , Brain , Central Nervous System/metabolism , Cholesterol/metabolism , Mammals/metabolism
2.
FEBS J ; 289(24): 7688-7709, 2022 12.
Article in English | MEDLINE | ID: mdl-34469619

ABSTRACT

Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease, is characterized by the selective degeneration of motor neurons leading to paralysis and eventual death. Multiple pathogenic mechanisms, including systemic dysmetabolism, have been proposed to contribute to ALS. Among them, dyslipidemia, i.e., abnormal level of cholesterol and other lipids in the circulation and central nervous system (CNS), has been reported in ALS patients, but without a consensus. Cholesterol is a constituent of cellular membranes and a precursor of steroid hormones, oxysterols, and bile acids. Consequently, optimal cholesterol levels are essential for health. Due to the blood-brain barrier (BBB), cholesterol cannot move between the CNS and the rest of the body. As such, cholesterol metabolism in the CNS is proposed to operate autonomously. Despite its importance, it remains elusive how cholesterol dyshomeostasis may contribute to ALS. In this review, we aim to describe the current state of cholesterol metabolism research in ALS, identify unresolved issues, and provide potential directions.


Subject(s)
Amyotrophic Lateral Sclerosis , Adult , Humans , Amyotrophic Lateral Sclerosis/metabolism , Motor Neurons/metabolism , Central Nervous System/metabolism , Cholesterol , Blood-Brain Barrier/metabolism
3.
EMBO J ; 39(8): e102811, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32175624

ABSTRACT

The C9orf72 repeat expansion causes amyotrophic lateral sclerosis and frontotemporal dementia, but the poor correlation between C9orf72-specific pathology and TDP-43 pathology linked to neurodegeneration hinders targeted therapeutic development. Here, we addressed the role of the aggregating dipeptide repeat proteins resulting from unconventional translation of the repeat in all reading frames. Poly-GA promoted cytoplasmic mislocalization and aggregation of TDP-43 non-cell-autonomously, and anti-GA antibodies ameliorated TDP-43 mislocalization in both donor and receiver cells. Cell-to-cell transmission of poly-GA inhibited proteasome function in neighboring cells. Importantly, proteasome inhibition led to the accumulation of TDP-43 ubiquitinated within the nuclear localization signal (NLS) at lysine 95. Mutagenesis of this ubiquitination site completely blocked poly-GA-dependent mislocalization of TDP-43. Boosting proteasome function with rolipram reduced both poly-GA and TDP-43 aggregation. Our data from cell lines, primary neurons, transgenic mice, and patient tissue suggest that poly-GA promotes TDP-43 aggregation by inhibiting the proteasome cell-autonomously and non-cell-autonomously, which can be prevented by inhibiting poly-GA transmission with antibodies or boosting proteasome activity with rolipram.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/metabolism , DNA-Binding Proteins/metabolism , Dipeptides/metabolism , Frontotemporal Dementia/pathology , Active Transport, Cell Nucleus , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/genetics , Cytoplasm/metabolism , DNA-Binding Proteins/genetics , Female , Frontotemporal Dementia/metabolism , HeLa Cells , Humans , Male , Mice , Neurons/metabolism , Nuclear Localization Signals , Proteasome Endopeptidase Complex/metabolism , Protein Aggregation, Pathological , Ubiquitin/metabolism
4.
Life Sci Alliance ; 1(2): e201800070, 2018 May.
Article in English | MEDLINE | ID: mdl-30456350

ABSTRACT

Frontotemporal dementia and amyotrophic lateral sclerosis patients with C9orf72 mutation show cytoplasmic poly-GR and poly-PR aggregates. Short poly-(Gly-Arg) and poly-(Pro-Arg) (poly-GR/PR) repeats localizing to the nucleolus are toxic in various model systems, but no interactors have been validated in patients. Here, the neuronal interactomes of cytoplasmic GFP-(GR)149 and nucleolar (PR)175-GFP revealed overlapping RNA-binding proteins, including components of stress granules, nucleoli, and ribosomes. Overexpressing the poly-GR/PR interactors STAU1/2 and YBX1 caused cytoplasmic aggregation of poly-GR/PR in large stress granule-like structures, whereas NPM1 recruited poly-GR into the nucleolus. Poly-PR expression reduced ribosome levels and translation consistent with reduction of synaptic proteins detected by proteomics. Surprisingly, truncated GFP-(GR)53, but not GFP-(GR)149, localized to the nucleolus and reduced ribosome levels and translation similar to poly-PR, suggesting that impaired ribosome biogenesis may be driving the acute toxicity observed in vitro. In patients, only ribosomes and STAU2 co-aggregated with poly-GR/PR. Partial sequestration of ribosomes may chronically impair protein synthesis even in the absence of nucleolar localization and contribute to pathogenesis.

5.
Cell ; 172(4): 696-705.e12, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29398115

ABSTRACT

Protein aggregation and dysfunction of the ubiquitin-proteasome system are hallmarks of many neurodegenerative diseases. Here, we address the elusive link between these phenomena by employing cryo-electron tomography to dissect the molecular architecture of protein aggregates within intact neurons at high resolution. We focus on the poly-Gly-Ala (poly-GA) aggregates resulting from aberrant translation of an expanded GGGGCC repeat in C9orf72, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. We find that poly-GA aggregates consist of densely packed twisted ribbons that recruit numerous 26S proteasome complexes, while other macromolecules are largely excluded. Proximity to poly-GA ribbons stabilizes a transient substrate-processing conformation of the 26S proteasome, suggesting stalled degradation. Thus, poly-GA aggregates may compromise neuronal proteostasis by driving the accumulation and functional impairment of a large fraction of cellular proteasomes.


Subject(s)
Alanine/analogs & derivatives , C9orf72 Protein , Neurons , Polyglutamic Acid , Proteasome Endopeptidase Complex , Protein Aggregates , Alanine/genetics , Alanine/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , HEK293 Cells , Humans , Neurons/metabolism , Neurons/pathology , Polyglutamic Acid/genetics , Polyglutamic Acid/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis , Protein Stability , Protein Structure, Quaternary , Rats , Rats, Sprague-Dawley
6.
Hum Mol Genet ; 26(4): 790-800, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28040728

ABSTRACT

A repeat expansion in the non-coding region of C9orf72 gene is the most common mutation causing frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Sense and antisense transcripts are translated into aggregating dipeptide repeat (DPR) proteins in all reading frames (poly-GA,-GP,-GR,-PA and -PR) through an unconventional mechanism. How these changes contribute to cytoplasmic mislocalization and aggregation of TDP-43 and thereby ultimately leading to neuron loss remains unclear. The repeat RNA itself and poly-GR/PR have been linked to impaired nucleocytoplasmic transport. Here, we show that compact cytoplasmic poly-GA aggregates impair nuclear import of a reporter containing the TDP-43 nuclear localization (NLS) signal. However, a reporter containing a non-classical PY-NLS was not affected. Moreover, poly-GA expression prevents TNFα induced nuclear translocation of p65 suggesting that poly-GA predominantly impairs the importin-α/ß-dependent pathway. In neurons, prolonged poly-GA expression induces partial mislocalization of TDP-43 into cytoplasmic granules. Rerouting poly-GA to the nucleus prevented TDP-43 mislocalization, suggesting a cytoplasmic mechanism. In rescue experiments, expression of importin-α (KPNA3, KPNA4) or nucleoporins (NUP54, NUP62) restores the nuclear localization of the TDP reporter. Taken together, inhibition of nuclear import of TDP-43 by cytoplasmic poly-GA inclusions causally links the two main aggregating proteins in C9orf72 ALS/FTLD pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA Repeat Expansion , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Neurons/metabolism , Proteins/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein , DNA-Binding Proteins/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , Humans , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Proteins/genetics , Rats , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , alpha Karyopherins/genetics , alpha Karyopherins/metabolism
7.
EMBO J ; 35(21): 2350-2370, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27621269

ABSTRACT

Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased ß2-transferrin levels in patient CSF Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling.


Subject(s)
DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomes/metabolism , Neurons/metabolism , Receptor, ErbB-4/metabolism , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cells, Cultured , DNA-Binding Proteins/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Gene Knockdown Techniques , Hippocampus/cytology , Humans , Protein Transport , Rats , Receptor, ErbB-4/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction
8.
Acta Neuropathol ; 131(4): 587-604, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26895297

ABSTRACT

Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is currently unclear. Based on our previous finding that FUS deposits are hypomethylated in FTLD-FUS but not in ALS-FUS, we have now investigated whether genetic or pharmacological inactivation of Protein arginine methyltransferase 1 (PRMT1) activity results in unmethylated FUS or in alternatively methylated forms of FUS. To do so, we generated FUS-specific monoclonal antibodies that specifically recognize unmethylated arginine (UMA), monomethylated arginine (MMA) or asymmetrically dimethylated arginine (ADMA). Loss of PRMT1 indeed not only results in an increase of UMA FUS and a decrease of ADMA FUS, but also in a significant increase of MMA FUS. Compared to ADMA FUS, UMA and MMA FUS exhibit much higher binding affinities to Transportin-1, the nuclear import receptor of FUS, as measured by pull-down assays and isothermal titration calorimetry. Moreover, we show that MMA FUS occurs exclusively in FTLD-FUS, but not in ALS-FUS. Our findings therefore provide additional evidence that FTLD-FUS and ALS-FUS are caused by distinct disease mechanisms although both share FUS deposits as a common denominator.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Lobar Degeneration/metabolism , Protein-Arginine N-Methyltransferases/metabolism , RNA-Binding Protein FUS/metabolism , beta Karyopherins/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Antibodies/pharmacology , Arginine/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Embryo, Mammalian , Embryonic Stem Cells , Enzyme Inhibitors/pharmacology , Female , Frontotemporal Lobar Degeneration/genetics , Humans , Inclusion Bodies/drug effects , Inclusion Bodies/metabolism , Male , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Protein Binding/drug effects , Protein Binding/genetics , Protein-Arginine N-Methyltransferases/genetics , RNA-Binding Protein FUS/immunology , Rats , beta Karyopherins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL