Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Radiol ; 21(8): 1216-1221, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38719103

ABSTRACT

INTRODUCTION: The growing cancer burden in Africa demands urgent action. Medical imaging is crucial for cancer diagnosis and management and is an essential enabler of precision medicine. To understand the readiness for quantitative imaging analysis to support cancer management in Africa, we analyzed the utilization patterns of imaging modalities for cancer research across the continent. METHODS: We retrieved articles by systematically searching PubMed, using a combination of search terms {"Neoplasm"} AND {"Radiology" or "Diagnostic imaging" or "Radiography" or "Interventional Radiology" or "Radiotherapy" or "Radiation Oncology"} AND {Africa∗ or 54 African countries}. Articles describing cancer diagnosis or management in humans with the utilization of imaging were included. Exclusion criteria were review articles, non-English articles, publications before 2000, noncancer diagnoses, and studies conducted outside Africa. RESULTS: The analysis of diagnostic imaging in Africa revealed a diverse utilization pattern across different cancer types and regions. The literature search identified 107 publications on cancer imaging in Africa. The studies were carried out in 19 African countries on 12 different cancer types with 6 imaging modalities identified. Most cancer imaging research studies used multiple imaging modalities. Ultrasound was the most used distinct imaging modality and MRI was the least frequently used. Most research studies originated from Nigeria, South Africa, and Egypt. CONCLUSION: We demonstrate substantial variability in the presence of imaging modalities, widespread utilization of ultrasonography, and limited availability of advanced imaging modalities for cancer research.


Subject(s)
Diagnostic Imaging , Neoplasms , Humans , Africa , Neoplasms/diagnostic imaging , Biomedical Research
2.
J Clin Transl Sci ; 8(1): e6, 2024.
Article in English | MEDLINE | ID: mdl-38384923

ABSTRACT

Introduction: Despite the central importance of cross-disciplinary collaboration in the Clinical and Translational Science Award (CTSA) network and the implementation of various programs designed to enhance collaboration, rigorous evidence for the efficacy of these approaches is lacking. We conducted a novel randomized controlled trial (RCT; ClinicalTrials.gov identifier: NCT05395286) of a promising approach to enhance collaboration readiness and behavior among 95 early career scholars from throughout the CTSA network. Methods: Participants were randomly assigned (within two cohorts) to participate in an Innovation Lab, a week-long immersive collaboration experience, or to a treatment-as-usual control group. Primary outcomes were change in metrics of self-reported collaboration readiness (through 12-month follow-up) and objective collaboration network size from bibliometrics (through 21 months); secondary outcomes included self-reported number of grants submitted and, among Innovation Lab participants only, reactions to the Lab experience (through 12 months). Results: Short-term reactions from Innovation Lab participants were quite positive, and controlled evidence for a beneficial impact of Innovation Labs over the control condition was observed in the self-reported number of grant proposals in the intent-to-treat sample. Primary measures of collaboration readiness were near ceiling in both groups, limiting the ability to detect enhancement. Collaboration network size increased over time to a comparable degree in both groups. Conclusions: The findings highlight the need for systematic intervention development research to identify efficacious strategies that can be implemented throughout the CTSA network to better support the goal of enhanced cross-disciplinary collaboration.

3.
Clin Nucl Med ; 49(1): 9-15, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38048554

ABSTRACT

AIM: The differentiation of paragangliomas, schwannomas, meningiomas, and other neuroaxis tumors in the head and neck remains difficult when conventional MRI is inconclusive. This study assesses the utility of 68 Ga-DOTATATE PET/CT as an adjunct to hone the diagnosis. PATIENTS AND METHODS: This retrospective study considered 70 neuroaxis lesions in 52 patients with 68 Ga-DOTATATE PET/CT examinations; 22 lesions (31%) had pathologic confirmation. Lesions were grouped based on pathological diagnosis and best radiologic diagnosis when pathology was not available. Wilcoxon rank sum tests were used to test for differences in SUV max among paragangliomas, schwannomas, and meningiomas. Receiver operator characteristic curves were constructed. RESULTS: Paragangliomas had a significantly greater 68 Ga-DOTATATE uptake (median SUV max , 62; interquartile range [IQR], 89) than nonparagangliomas. Schwannomas had near-zero 68 Ga-DOTATATE uptake (median SUV max , 2; IQR, 1). Intermediate 68 Ga-DOTATATE uptake was seen for meningiomas (median SUV max , 19; IQR, 6) and other neuroaxis lesions (median SUV max , 7; IQR, 9). Receiver operator characteristic analysis demonstrated an area under the curve of 0.87 for paragangliomas versus all other lesions and 0.97 for schwannomas versus all other lesions. CONCLUSIONS: Marked 68 Ga-DOTATATE uptake (>50 SUV max ) favors a diagnosis of paraganglioma, although paragangliomas exhibit a wide variability of uptake. Low to moderate level 68 Ga-DOTATATE uptake is nonspecific and may represent diverse pathophysiology including paraganglioma, meningioma, and other neuroaxis tumors but essentially excludes schwannomas, which exhibited virtually no uptake.


Subject(s)
Meningeal Neoplasms , Meningioma , Neurilemmoma , Neuroendocrine Tumors , Organometallic Compounds , Paraganglioma , Humans , Positron Emission Tomography Computed Tomography , Meningioma/diagnostic imaging , Retrospective Studies , Positron-Emission Tomography , Paraganglioma/diagnostic imaging , Meningeal Neoplasms/diagnostic imaging , Neuroendocrine Tumors/pathology
SELECTION OF CITATIONS
SEARCH DETAIL