Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
2.
Gut Microbes ; 16(1): 2307586, 2024.
Article in English | MEDLINE | ID: mdl-38298161

ABSTRACT

The fungal microbiota plays an important role in the pathogenesis of alcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). In this study, we aimed to compare changes of the fecal fungal microbiota between patients with ALD and NAFLD and to elucidate patterns in different disease stages between the two conditions. We analyzed fungal internal transcribed spacer 2 (ITS2) sequencing using fecal samples from a cohort of 48 patients with ALD, 78 patients with NAFLD, and 34 controls. The fungal microbiota differed significantly between ALD and NAFLD. The genera Saccharomyces, Kluyveromyces, Scopulariopsis, and the species Candida albicans (C. albicans), Malassezia restricta (M. restricta), Scopulariopsis cordiae (S. cordiae) were significantly increased in patients with ALD, whereas the genera Kazachstania and Mucor were significantly increased in the NAFLD cohort. We identified the fungal signature consisting of Scopulariopsis, Kluyveromyces, M. restricta, and Mucor to have the highest discriminative ability to detect ALD vs NAFLD with an area under the curve (AUC) of 0.93. When stratifying the ALD and NAFLD cohorts by fibrosis severity, the fungal signature with the highest AUC of 0.92 to distinguish ALD F0-F1 vs NAFLD F0-F1 comprised Scopulariopsis, Kluyveromyces, Mucor, M. restricta, and Kazachstania. For more advanced fibrosis stages (F2-F4), the fungal signature composed of Scopulariopsis, Kluyveromyces, Mucor, and M. restricta achieved the highest AUC of 0.99 to differentiate ALD from NAFLD. This is the first study to identify a fungal signature to differentiate two metabolic fatty liver diseases from each other, specifically ALD from NAFLD. This might have clinical utility in unclear cases and might hence help shape treatment approaches. However, larger studies are required to validate this fungal signature in other populations of ALD and NAFLD.


Subject(s)
Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Mycobiome , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Liver Diseases, Alcoholic/pathology , Fibrosis , Liver/pathology , Liver Cirrhosis/pathology
3.
Hepatology ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38377466

ABSTRACT

BACKGROUND AND AIMS: Patients with alcohol-associated hepatitis (AH) have an altered fecal metabolome, including reduced microbiota-derived tryptophan metabolites, which function as ligands for aryl hydrocarbon receptor (AhR). The aim of this study was to assess serum AhR ligand activity in patients with AH. APPROACH AND RESULTS: The study included 74 controls without AUD, 97 patients with AUD, and 330 patients with AH from 2 different multicenter cohorts (InTeam: 134, AlcHepNet: 196). Serum AhR activity was evaluated using an AhR reporter assay with HepG2-Lucia cells incubated with serum for 24 hours. Serum AhR activity was significantly higher in patients with AH compared with both controls (1.59 vs. 0.96-fold change, p < 0.001) and patients with AUD (1.59 vs. 0.93, p < 0.001). In both AH cohorts, patients with AhR activity ≥ 2.09 had significantly lower cumulative survival rates at 30, 60, 90, and 180 days compared to those with AhR activity < 2.09. When serum AhR activity was used to further stratify patients with severe AH, the cumulative 30, 60, 90, and 180-day survival rates for patients with severe AH and the AhR activity ≥ 2.09 group were all significantly lower than those with an AhR activity < 2.09 group. CONCLUSIONS: Serum AhR activity was significantly higher in patients with AH compared with controls and individuals with AUD, and this increased activity was associated with higher mortality. Consequently, serum AhR activity holds potential as a prognostic marker.

4.
Front Med (Lausanne) ; 10: 1215927, 2023.
Article in English | MEDLINE | ID: mdl-37663663

ABSTRACT

One of the most important statistical analyses when designing animal and human studies is the calculation of the required sample size. In this review, we define central terms in the context of sample size determination, including mean, standard deviation, statistical hypothesis testing, type I/II error, power, direction of effect, effect size, expected attrition, corrected sample size, and allocation ratio. We also provide practical examples of sample size calculations for animal and human studies based on pilot studies, larger studies similar to the proposed study-or if no previous studies are available-estimated magnitudes of the effect size per Cohen and Sawilowsky.

5.
World J Hepatol ; 15(5): 609-640, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37305367

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide among children and adolescents. It encompasses a spectrum of disease, from its mildest form of isolated steatosis, to nonalcoholic steatohepatitis (NASH) to liver fibrosis and cirrhosis, or end-stage liver disease. The early diagnosis of pediatric NAFLD is crucial in preventing disease progression and in improving outcomes. Currently, liver biopsy is the gold standard for diagnosing NAFLD. However, given its invasive nature, there has been significant interest in developing noninvasive methods that can be used as accurate alternatives. Here, we review noninvasive biomarkers in pediatric NAFLD, focusing primarily on the diagnostic accuracy of various biomarkers as measured by their area under the receiver operating characteristic, sensitivity, and specificity. We examine two major approaches to noninvasive biomarkers in children with NAFLD. First, the biological approach that quantifies serological biomarkers. This includes the study of individual circulating molecules as biomarkers as well as the use of composite algorithms derived from combinations of biomarkers. The second is a more physical approach that examines data measured through imaging techniques as noninvasive biomarkers for pediatric NAFLD. Each of these approaches was applied to children with NAFLD, NASH, and NAFLD with fibrosis. Finally, we suggest possible areas for future research based on current gaps in knowledge.

6.
Hepatobiliary Pancreat Dis Int ; 22(5): 474-481, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37198098

ABSTRACT

BACKGROUND: Cirrhosis with acute decompensation (AD) and acute-on-chronic liver failure (ACLF) are characterized by high morbidity and mortality. Cytolysin, a toxin from Enterococcus faecalis (E. faecalis), is associated with mortality in alcohol-associated hepatitis (AH). It is unclear whether cytolysin also contributes to disease severity in AD and ACLF. METHODS: We studied the role of fecal cytolysin in 78 cirrhotic patients with AD/ACLF. Bacterial DNA from fecal samples was extracted and real-time quantitative polymerase chain reaction (PCR) was performed. The association between fecal cytolysin and liver disease severity in cirrhosis with AD or ACLF was analyzed. RESULTS: Fecal cytolysin and E. faecalis abundance did not predict chronic liver failure (CLIF-C) AD and ACLF scores. Presence of fecal cytolysin was not associated with other liver disease markers, including Fibrosis-4 (FIB-4) index, 'Age, serum Bilirubin, INR, and serum Creatinine (ABIC)' score, Child-Pugh score, model for end-stage liver disease (MELD) nor MELD-Na scores in AD or ACLF patients. CONCLUSIONS: Fecal cytolysin does not predict disease severity in AD and ACLF patients. The predictive value of fecal cytolysin positivity for mortality appears to be restricted to AH.


Subject(s)
Acute-On-Chronic Liver Failure , End Stage Liver Disease , Humans , Acute-On-Chronic Liver Failure/diagnosis , End Stage Liver Disease/complications , Severity of Illness Index , Prognosis , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Cytotoxins
7.
Am J Physiol Gastrointest Liver Physiol ; 325(1): G42-G61, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37129252

ABSTRACT

The use of probiotics, prebiotics, and synbiotics has become an important therapy in numerous gastrointestinal diseases in recent years. Modifying the gut microbiota, this therapeutic approach helps to restore a healthy microbiome. Nonalcoholic fatty liver disease and alcohol-associated liver disease are among the leading causes of chronic liver disease worldwide. A disrupted intestinal barrier, microbial translocation, and an altered gut microbiome metabolism, or metabolome, are crucial in the pathogenesis of these chronic liver diseases. As pro-, pre-, and synbiotics modulate these targets, they were identified as possible new treatment options for liver disease. In this review, we highlight the current findings on clinical and mechanistic effects of this therapeutic approach in nonalcoholic fatty liver disease and alcohol-associated liver disease.


Subject(s)
Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Probiotics , Synbiotics , Humans , Prebiotics , Non-alcoholic Fatty Liver Disease/therapy , Probiotics/therapeutic use , Intestines
8.
Hepatology ; 78(4): 1168-1181, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37021791

ABSTRACT

BACKGROUND AND AIMS: NAFLD in adolescents is an increasing health crisis worldwide, but its exact global, continental, and national prevalence, its relationship with other metabolic conditions, and the human development index (HDI) globally are not known. APPROACH AND RESULTS: We analyzed data from the Global Burden of Disease Study 2019 to compare global, continental, and national prevalence rates of adolescent NAFLD and associations with other metabolic conditions and HDI. The global NAFLD prevalence in adolescents increased from 3.73% in 1990 to 4.71% in 2019 (a relative increase of 26.27%). The prevalence for the male and female populations was 5.84% and 3.52% in 2019, respectively. The Oceanian and North American continents had the highest adolescent NAFLD prevalence (median: 6.54% and 5.64%, respectively), whereas Europe had the lowest prevalence (median: 3.98%). South America and North America had the highest relative increase in adolescent NAFLD prevalence from 1990 to 2019 (median: 39.25% and 36.87%, respectively). High body mass index and type 2 diabetes mellitus increased significantly in adolescents worldwide. However, only high body mass index and not type 2 diabetes mellitus correlated with NAFLD prevalence in adolescents globally. Countries with a higher HDI had larger increases in adolescent NAFLD prevalence from 1990 to 2019 although countries with the highest HDI (HDI: > 0.9) had the lowest NAFLD prevalence in 2019. CONCLUSIONS: NAFLD in adolescents is an increasing health problem on all continents. Improving environmental factors, including lifestyle but also healthcare policies, can help to prevent NAFLD from developing in children and adolescents and help to improve outcomes in children and adolescents with NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Child , Humans , Male , Adolescent , Female , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Diabetes Mellitus, Type 2/complications , Prevalence , Global Burden of Disease , Body Mass Index
9.
Alcohol Clin Exp Res (Hoboken) ; 47(5): 856-867, 2023 May.
Article in English | MEDLINE | ID: mdl-36871955

ABSTRACT

BACKGROUND AND PURPOSE: Gut bacteria metabolize tryptophan into indoles. Intestinal levels of the tryptophan metabolite indole-3-acetic acid are reduced in patients with alcohol-associated hepatitis. Supplementation of indole-3-acetic acid protects against ethanol-induced liver disease in mice. The aim of this study was to evaluate the effect of engineered bacteria producing indoles as Aryl-hydrocarbon receptor (Ahr) agonists. METHODS: C57BL/6 mice were subjected to chronic-plus-binge ethanol feeding and orally given PBS, control Escherichia coli Nissle 1917 (EcN) or engineered EcN-Ahr. The effects of EcN and EcN-Ahr were also examined in mice lacking Ahr in interleukin 22 (Il22)-producing cells. RESULTS: Through the deletion of endogenous genes trpR and tnaA, coupled with overexpression of a feedback-resistant tryptophan biosynthesis operon, EcN-Ahr were engineered to overproduce tryptophan. Additional engineering allowed conversion of this tryptophan to indoles including indole-3-acetic acid and indole-3-lactic acid. EcN-Ahr ameliorated ethanol-induced liver disease in C57BL/6 mice. EcN-Ahr upregulated intestinal gene expression of Cyp1a1, Nrf2, Il22, Reg3b, and Reg3g, and increased Il22-expressing type 3 innate lymphoid cells. In addition, EcN-Ahr reduced translocation of bacteria to the liver. The beneficial effect of EcN-Ahr was abrogated in mice lacking Ahr expression in Il22-producing immune cells. CONCLUSIONS: Our findings indicate that tryptophan metabolites locally produced by engineered gut bacteria mitigate liver disease via Ahr-mediated activation in intestinal immune cells.

10.
Cell Host Microbe ; 31(3): 389-404.e7, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36893735

ABSTRACT

Alcohol-associated liver disease is accompanied by intestinal mycobiome dysbiosis, yet the impacts on liver disease are unclear. We demonstrate that Candida albicans-specific T helper 17 (Th17) cells are increased in circulation and present in the liver of patients with alcohol-associated liver disease. Chronic ethanol administration in mice causes migration of Candida albicans (C. albicans)-reactive Th17 cells from the intestine to the liver. The antifungal agent nystatin decreased C. albicans-specific Th17 cells in the liver and reduced ethanol-induced liver disease in mice. Transgenic mice expressing T cell receptors (TCRs) reactive to Candida antigens developed more severe ethanol-induced liver disease than transgene-negative littermates. Adoptively transferring Candida-specific TCR transgenic T cells or polyclonal C. albicans-primed T cells exacerbated ethanol-induced liver disease in wild-type mice. Interleukin-17 (IL-17) receptor A signaling in Kupffer cells was required for the effects of polyclonal C. albicans-primed T cells. Our findings indicate that ethanol increases C. albicans-specific Th17 cells, which contribute to alcohol-associated liver disease.


Subject(s)
Candida albicans , Th17 Cells , Mice , Animals , Candida , Mice, Transgenic , Ethanol/toxicity
11.
Dig Dis Sci ; 68(7): 3059-3069, 2023 07.
Article in English | MEDLINE | ID: mdl-36807831

ABSTRACT

BACKGROUND: Alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) are two of the most common etiologies of chronic liver disease worldwide. Changes in intestinal permeability and increased gut microbial translocation have been posited as important contributors to inflammation in both ALD and NAFLD. However, gut microbial translocation has not been compared between the two etiologies and can lead to better understanding of the differences in their pathogenesis to liver disease. METHODS: We compared serum and liver markers in the following five models of liver disease to understand the differences in the role of gut microbial translocation on liver disease progression caused by ethanol versus Western diet: (1) 8-week chronic ethanol feeding model. (2) 2-week chronic-plus-binge (National Institute on Alcohol Abuse and Alcoholism (NIAAA)) ethanol feeding model. (3) 2-week chronic-plus-binge (NIAAA) ethanol feeding model in microbiota-humanized gnotobiotic mice colonized with stool from patients with alcohol-associated hepatitis. (4) 20-week Western-diet-feeding model of NASH. (5) 20-week Western-diet-feeding model in microbiota-humanized gnotobiotic mice colonized with stool from NASH patients. RESULTS: Translocation of bacterial lipopolysaccharide to the peripheral circulation was seen in both ethanol-induced and diet-induced liver disease, but translocation of bacteria itself was restricted to only ethanol-induced liver disease. Moreover, the diet-induced steatohepatitis models developed more significant liver injury, inflammation, and fibrosis compared with ethanol-induced liver disease models, and this positively correlated with the level of lipopolysaccharide translocation. CONCLUSIONS: More significant liver injury, inflammation, and fibrosis are seen in diet-induced steatohepatitis, which positively correlates with translocation of bacterial components, but not intact bacteria.


Subject(s)
Hepatitis, Alcoholic , Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Mice , Animals , Ethanol/adverse effects , Non-alcoholic Fatty Liver Disease/pathology , Bacterial Translocation , Lipopolysaccharides , Liver/pathology , Liver Diseases, Alcoholic/complications , Hepatitis, Alcoholic/complications , Inflammation/pathology , Diet , Bacteria , Fibrosis , Mice, Inbred C57BL , Disease Models, Animal
12.
Hepatology ; 78(1): 295-306, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36811393

ABSTRACT

BACKGROUND AND AIMS: Patients with severe alcohol-associated hepatitis have high morbidity and mortality. Novel therapeutic approaches are urgently needed. The aims of our study were to confirm the predictive value of cytolysin-positive Enterococcus faecalis ( E. faecalis ) for mortality in patients with alcohol-associated hepatitis and to assess the protective effect of specific chicken immunoglobulin Y (IgY) antibodies against cytolysin in vitro and in a microbiota-humanized mouse model of ethanol-induced liver disease. APPROACH AND RESULTS: We investigated a multicenter cohort of 26 subjects with alcohol-associated hepatitis and confirmed our previous findings that the presence of fecal cytolysin-positive E. faecalis predicted 180-day mortality in those patients. After combining this smaller cohort with our previously published multicenter cohort, the presence of fecal cytolysin has a better diagnostic area under the curve, better other accuracy measures, and a higher odds ratio to predict death in patients with alcohol-associated hepatitis than other commonly used liver disease models. In a precision medicine approach, we generated IgY antibodies against cytolysin from hyperimmunized chickens. Neutralizing IgY antibodies against cytolysin reduced cytolysin-induced cell death in primary mouse hepatocytes. The oral administration of IgY antibodies against cytolysin decreased ethanol-induced liver disease in gnotobiotic mice colonized with stool from cytolysin-positive patients with alcohol-associated hepatitis. CONCLUSIONS: E. faecalis cytolysin is an important mortality predictor in alcohol-associated hepatitis patients, and its targeted neutralization through specific antibodies improves ethanol-induced liver disease in microbiota-humanized mice.


Subject(s)
Ethanol , Hepatitis, Alcoholic , Animals , Mice , Chickens , Immunoglobulins/therapeutic use , Antibodies , Cytotoxins , Hepatitis, Alcoholic/drug therapy
14.
Hepatol Commun ; 7(2): e0029, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36706195

ABSTRACT

Chronic alcohol consumption is associated with intestinal fungal dysbiosis, yet we understand little about how alterations of intestinal fungi (mycobiota) contribute to the pathogenesis of alcohol-associated liver disease. By reanalyzing internal transcribed spacer 2 amplicon sequencing of fecal samples from a cohort of 66 patients with alcohol use disorder for presence (as opposed to relative abundance) of fungal species, we observed that the presence of Malassezia restricta was associated with increased markers of liver injury. M. restricta exacerbates ethanol-induced liver injury both in acute binge and chronic ethanol-feeding models in mice. Using bone marrow chimeric mice, we found that the disease exacerbating effect by M. restricta was mediated by C-type lectin domain family 4, member N on bone marrow-derived cells. M. restricta induces inflammatory cytokines and chemokines in Kupffer cells through C-type lectin domain family 4, member N signaling. Targeting fungal pathobionts might be a therapeutic strategy for alcohol-associated liver disease.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Liver Diseases, Alcoholic , Animals , Mice , Ethanol/adverse effects , Liver Diseases, Alcoholic/microbiology , Lectins, C-Type/genetics
15.
Alcohol Clin Exp Res (Hoboken) ; 47(1): 36-44, 2023 01.
Article in English | MEDLINE | ID: mdl-36446606

ABSTRACT

Alcohol misuse contributes to the dysregulation of immune responses and multiorgan dysfunction across various tissues, which are associated with higher risk of morbidity and mortality in people with alcohol use disorders. Organ-specific immune cells, including microglia in the brain, alveolar macrophages in the lungs, and Kupffer cells in the liver, play vital functions in host immune defense through tissue repair and maintenance of homeostasis. However, binge drinking and chronic alcohol misuse impair these immune cells' abilities to regulate inflammatory signaling and metabolism, thus contributing to multiorgan dysfunction. Further complicating these delicate systems, immune cell dysfunction associated with alcohol misuse is exacerbated by aging and gut barrier leakage. This critical review describes recent advances in elucidating the potential mechanisms by which alcohol misuse leads to derangements in host immunity and highlights current gaps in knowledge that may be the focus of future investigations.


Subject(s)
Alcoholism , Humans , Alcoholism/metabolism , Ethanol/metabolism , Liver , Macrophages, Alveolar/metabolism , Lung
16.
J Hepatol ; 78(4): 836-851, 2023 04.
Article in English | MEDLINE | ID: mdl-36565724

ABSTRACT

Liver and biliary diseases affect more than a billion people worldwide, with high associated morbidity and mortality. The impact of the intestinal bacterial microbiome on liver diseases has been well established. However, the fungal microbiome, or mycobiome, has been overlooked for a long time. Recently, several studies have shed light on the role of the mycobiome in the development and progression of hepatobiliary diseases. In particular, the fungal genus Candida has been found to be involved in the pathogenesis of multiple hepatobiliary conditions. Herein, we compare colonisation and infection, describe mycobiome findings in the healthy state and across the various hepatobiliary conditions, and point toward communalities. We detail how quantitation of immune responses to fungal antigens can be employed to predict disease severity, e.g. using antibodies to Saccharomyces cerevisiae or specific anti-Candida albicans antibodies. We also show how fungal products (e.g. beta-glucans, candidalysin) activate the host's immune system to exacerbate liver and biliary diseases. Finally, we describe how the gut mycobiome can be modulated to ameliorate hepatobiliary conditions.


Subject(s)
Digestive System Diseases , Mycobiome , Mycoses , Humans , Mycobiome/physiology , Candida , Candida albicans , Saccharomyces cerevisiae
17.
Methods Protoc ; 5(5)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36287053

ABSTRACT

Alanine aminotransferase (ALT) levels are frequently determined in serum and plasma samples and are a primary measure to quantitate hepatocellular injury in rodents, humans, and other organisms. An accurate, reliable, and scalable assay is hence of central importance. Here, we describe a methodology that fulfills those requirements, and demonstrates an excellent performance similar to a commercial ALT kit, with a long stable performance over several subsequent runs. Further, anticoagulation of blood samples with ethylenediaminetetraacetic acid (EDTA) or heparin results in similar ALT concentrations with this assay, whereas no anticoagulation significantly increases ALT levels. Mild hemolysis does not significantly increase ALT levels; however, moderate to severe hemolysis does lead to higher ALT levels. The assay provides stable results over a wide range of associated triglyceride concentrations that can be expected in serum and plasma samples from rodents and humans with dyslipidemia. It also performs well in diluted samples with a reduction of ALT levels corresponding to the factor used to dilute the samples. The described ALT reagent is also very affordable, costing less than 1/80 of comparable commercial kits. Based on the characteristics above, this methodology is suitable for a broad spectrum of applications in mice and possibly humans, where ALT concentrations need to be determined.

18.
Int Immunol ; 34(9): 455-466, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35792761

ABSTRACT

Cirrhosis is end-stage liver disease resulting from various etiologies and is a common cause of death worldwide. The progression from compensated to decompensated cirrhosis to acute-on-chronic liver failure (ACLF) is due to multiple factors, including continuation of alcohol use or continued exposure to other toxins, an imbalance of the gut microbiota (dysbiosis), increased gut permeability and a disrupted immune response. This disrupted immune response is also named cirrhosis-associated immune dysfunction, which is characterized by worsening systemic inflammation with concomitant immune paralysis, as liver disease deteriorates. This review highlights central immunologic events during the exacerbation of cirrhosis and characterizes the different immune cell populations involved therein.


Subject(s)
Acute-On-Chronic Liver Failure , Gastrointestinal Microbiome , Immune System Diseases , Acute-On-Chronic Liver Failure/complications , Dysbiosis , Humans , Inflammation , Liver Cirrhosis/complications
19.
Front Physiol ; 13: 893074, 2022.
Article in English | MEDLINE | ID: mdl-35492588
20.
Hepatol Commun ; 6(8): 2058-2069, 2022 08.
Article in English | MEDLINE | ID: mdl-35368152

ABSTRACT

Alcohol use is a leading cause of chronic liver disease worldwide, and changes in the microbiome associated with alcohol use contribute to patients' risk for liver disease progression. Less is known about the effects of alcohol use on the intestinal viral microbiome (virome) and interactions between bacteriophages and their target bacteria. We studied changes in the intestinal virome of 62 clinically well-characterized patients with alcohol use disorder (AUD) during active alcohol use and after 2 weeks of alcohol abstinence, by extracting virus-like particles and performing metagenomic sequencing. We observed decreased abundance of Propionibacterium, Lactobacillus, and Leuconostoc phages in patients with active AUD when compared with controls, whereas after 2 weeks of alcohol abstinence, patients with AUD demonstrated an increase in the abundance of Propionibacterium, Lactobacillus, and Leuconostoc phages. The intestinal virome signature was also significantly different in patients with AUD with progressive liver disease, with increased abundance of phages targeting Enterobacteria and Lactococcus species phages compared with patients with AUD with nonprogressive liver disease. By performing moderation analyses, we found that progressive liver disease is associated with changes in interactions between some bacteriophages and their respective target bacteria. In summary, active alcohol use and alcohol-associated progressive liver disease are associated with changes in the fecal virome, some of which are partially reversible after a short period of abstinence. Progression of alcohol-associated liver disease is associated with changes in bacteriophage-bacteria interactions.


Subject(s)
Alcoholism , Bacteriophages , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Bacteria/genetics , Bacteriophages/genetics , Humans , Intestines , Metagenomics , Virome
SELECTION OF CITATIONS
SEARCH DETAIL
...