Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Med Chem Lett ; 9(6): 546-551, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29937980

ABSTRACT

Protein thermal shift assays (TSAs) provide a means for characterizing target engagement through ligand-induced thermal stabilization. Although these assays are widely utilized for screening libraries and validating hits in drug discovery programs, they can impose encumbering operational requirements, such as the availability of purified proteins or selective antibodies. Appending the target protein with a small luciferase (NanoLuc) allows coupling of thermal denaturation with luminescent output, providing a rapid and sensitive means for assessing target engagement in compositionally complex environments such as permeabilized cells. The intrinsic thermal stability of NanoLuc is greater than mammalian proteins, and our results indicate that the appended luciferase does not alter thermal denaturation of the target protein. We have successfully applied the NanoLuc luciferase thermal shift assay (NaLTSA) to several clinically relevant protein families, including kinases, bromodomains, and histone deacetylases. We have also demonstrated the suitability of this assay method for library screening and compound profiling.

2.
Cell Chem Biol ; 25(2): 206-214.e11, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29174542

ABSTRACT

For kinase inhibitors, intracellular target selectivity is fundamental to pharmacological mechanism. Although a number of acellular techniques have been developed to measure kinase binding or enzymatic inhibition, such approaches can fail to accurately predict engagement in cells. Here we report the application of an energy transfer technique that enabled the first broad-spectrum, equilibrium-based approach to quantitatively profile target occupancy and compound affinity in live cells. Using this method, we performed a selectivity profiling for clinically relevant kinase inhibitors against 178 full-length kinases, and a mechanistic interrogation of the potency offsets observed between cellular and biochemical analysis. For the multikinase inhibitor crizotinib, our approach accurately predicted cellular potency and revealed improved target selectivity compared with biochemical measurements. Due to cellular ATP, a number of putative crizotinib targets are unexpectedly disengaged in live cells at a clinically relevant drug dose.


Subject(s)
Adenosine Triphosphate/metabolism , Phosphotransferases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Cell Survival , Dose-Response Relationship, Drug , Energy Transfer , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Mass Spectrometry , Molecular Structure , Phosphotransferases/metabolism , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
3.
Nat Commun ; 6: 10091, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26631872

ABSTRACT

The therapeutic action of drugs is predicated on their physical engagement with cellular targets. Here we describe a broadly applicable method using bioluminescence resonance energy transfer (BRET) to reveal the binding characteristics of a drug with selected targets within intact cells. Cell-permeable fluorescent tracers are used in a competitive binding format to quantify drug engagement with the target proteins fused to Nanoluc luciferase. The approach enabled us to profile isozyme-specific engagement and binding kinetics for a panel of histone deacetylase (HDAC) inhibitors. Our analysis was directed particularly to the clinically approved prodrug FK228 (Istodax/Romidepsin) because of its unique and largely unexplained mechanism of sustained intracellular action. Analysis of the binding kinetics by BRET revealed remarkably long intracellular residence times for FK228 at HDAC1, explaining the protracted intracellular behaviour of this prodrug. Our results demonstrate a novel application of BRET for assessing target engagement within the complex milieu of the intracellular environment.


Subject(s)
Cells/drug effects , Fluorescence Resonance Energy Transfer/methods , Histone Deacetylase Inhibitors/chemistry , Pharmaceutical Preparations/chemistry , Cell Proliferation , Cells/chemistry , Cells/cytology , HeLa Cells , Histone Deacetylase 1/chemistry , Histone Deacetylase 1/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Luciferases/chemistry , Luciferases/genetics , Luciferases/metabolism , Luminescence
SELECTION OF CITATIONS
SEARCH DETAIL