Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecohealth ; 8(4): 485-500, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22071719

ABSTRACT

Land use change is one of the most commonly cited contributing factors to infectious disease emergence, yet the mechanisms responsible for such changes and the spatial scales at which they operate are rarely identified. The distributions of parasites with complex life cycles depend on interactions between multiple host species, suggesting the net effects of land use on infection patterns may be difficult to predict a priori. Here, we used an information-theoretic approach to evaluate the importance of land use and spatial scale (local, watershed, and regional) in determining the presence and abundance of multi-host trematodes of amphibians. Among 40 wetlands and 160 hosts sampled, trematode abundance, species richness, and the presence and abundance of pathogenic species were strongly influenced by variables at the watershed and regional scales. Based on model averaging results, overall parasite richness and abundance were higher in forested wetlands than in agricultural areas; however, this pattern was influenced by a wetland's proximity to the Mississippi Flyway at the regional scale. These patterns likely reflect the activity of trematode definitive hosts, such as mammals and especially birds, such that infections decreased with increasing distance from the Mississippi River. Interestingly, despite lower mean infections, agricultural wetlands had higher variances and maximum infections. At the wetland scale, phosphorus concentrations and the abundances of intermediate hosts, such as snails and larval amphibians, positively affected parasite distributions. Taken together, these results contribute to our understanding of how altered landscapes affect parasite communities and inform further research on the environmental drivers of amphibian parasite infections.


Subject(s)
Amphibians/parasitology , Biodiversity , Trematoda/classification , Trematoda/isolation & purification , Wetlands , Agriculture , Animals , Ecosystem , Geography , Host-Parasite Interactions , Population Dynamics , Trees , Wisconsin
2.
J Parasitol ; 97(6): 1055-61, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21671721

ABSTRACT

Experimental infections provide an important foundation for understanding host responses to parasites. While infections with Ribeiroia ondatrae cause mortality and malformations in a wide range of amphibian second intermediate host species, little is known about how the parasite affects its snail first intermediate hosts or even what species can support infection. In this study, we experimentally exposed Helisoma trivolvis, a commonly reported host of R. ondatrae, and Biomphalaria glabrata, a confamilial snail known to host Ribeiroia marini, to increasing concentrations of embryonated eggs of R. ondatrae obtained from surrogate definitive hosts. Over the course of 8 wk, we examined the effect of parasite exposure on infection status, time-to-cercariae release, host size, and mortality of both snail species. Helisoma trivolvis was a highly competent host for R. ondatrae infection, with over 93% infection in all exposed snails, regardless of egg exposure level. However, no infections were detected among exposed B. glabrata, despite previous accounts of this snail hosting a congener parasite. Among exposed H. trivolvis, high parasite exposure reduced growth, decreased time-to-cercariae release, and caused marginally significant increases in mortality. Interestingly, while B. glabrata snails did not become infected with R. ondatrae, individuals exposed to 650 R. ondatrae eggs grew less rapidly than unexposed snails, suggesting a sub-lethal energetic cost associated with parasite exposure. Our results highlight the importance of using experimental infections to understand the effects of parasite exposure on host- and non-host species, each of which can be affected by exposure.


Subject(s)
Snails/parasitology , Trematoda/physiology , Analysis of Variance , Animals , Anura , Biomphalaria/growth & development , Biomphalaria/parasitology , Host-Parasite Interactions , Logistic Models , Male , Random Allocation , Ranidae , Rats , Snails/growth & development
3.
Proc Biol Sci ; 276(1662): 1657-63, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19203926

ABSTRACT

Global biodiversity loss and disease emergence are two of the most challenging issues confronting science and society. Recently, observed linkages between species-loss and vector-borne infections suggest that biodiversity may help reduce pathogenic infections in humans and wildlife, but the mechanisms underlying this relationship and its applicability to a broader range of pathogens have remained speculative. Here, we experimentally evaluated the effects of host community structure on transmission of the human pathogen, Schistosoma mansoni, which alternates between snail intermediate hosts and vertebrate definitive hosts. By manipulating parasite exposure and community diversity, we show that heterospecific communities cause a 25-50 per cent reduction in infection among snail hosts (Biomphalaria glabrata). Infected snails raised alongside non-host snails (Lymnaea or Helisoma sp.) also produced 60-80 per cent fewer cercariae, suggesting that diverse communities could reduce human infection risk. Because focal host density was held constant during experiments, decreases in transmission resulted entirely from diversity-mediated pathways. Finally, the decrease in infection in mixed-species communities led to an increase in reproductive output by hosts, representing a novel example of parasite-mediated facilitation. Our results underscore the significance of community structure on transmission of complex life-cycle pathogens, and we emphasize enhanced integration between ecological and parasitological research on the diversity-disease relationship.


Subject(s)
Biodiversity , Biomphalaria/parasitology , Host-Parasite Interactions , Schistosoma mansoni/physiology , Schistosomiasis mansoni/transmission , Animals , Gastropoda/parasitology , Humans , Lymnaea/parasitology , Population Density , Population Dynamics , Risk Assessment , Schistosomiasis mansoni/parasitology
4.
J Anim Ecol ; 78(1): 191-201, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18671806

ABSTRACT

1. Within a community, different host species often exhibit broad variation in sensitivity to infection and disease. Because such differences can influence the strength and outcome of community interactions, it is essential to understand differential disease patterns and identify the mechanisms responsible. 2. In North American wetlands, amphibian species often exhibit extraordinary differences in the frequency of limb malformations induced by the digenetic trematode, Ribeiroia ondatrae. By coupling field studies with parasite exposure experiments, we evaluated whether such patterns were due to differences in (i) parasite encounter rate, (ii) infection establishment, or (iii) parasite persistence within hosts. 3. Field results underscored the broad variation in malformations and infection between host species; while nearly 60% (n = 618) of emerging American toads exhibited severe limb deformities such as bony triangles, skin webbings and missing limbs, fewer than 4% (n = 251) of Eastern gray treefrogs from the same pond were abnormal. Despite similarities in the phenology and larval development period of these species, they differed sharply in Ribeiroia infection. On average, toads supported 75x more metacercariae than did metamorphic treefrogs. 4. Experimental exposures of larval toads and treefrogs to a realistic range of Ribeiroia cercariae revealed strong differences in the sensitivity of these species to infection; exposed toads suffered elevated mortality (up to 95%), delayed metamorphosis, and severe limb malformations consistent with field observations. Treefrogs, in contrast, exhibited limited mortality and no malformations, regardless of exposure level. Ribeiroia cercariae were substantially less successful in locating and infecting Hyla versicolor larvae. 5. Our results indicate that the observed differences in infection and malformations owe to a lower ability of Ribeiroia cercariae to both find and establish within larval treefrogs, possibly stemming from a heightened immune response to infection. Because Ribeiroia is a highly pathogenic parasite with negative effects on larval and metamorphic amphibian survival, variation in infection resistance among species could have important implications for understanding patterns of species co-occurrence, competition, and community diversity.


Subject(s)
Anura/parasitology , Helminthiasis, Animal/parasitology , Trematoda/physiology , Trematode Infections/veterinary , Animals , Anura/growth & development , Helminthiasis, Animal/mortality , Helminthiasis, Animal/pathology , Larva/growth & development , Larva/parasitology , Metamorphosis, Biological/physiology , Seasons , Snails/parasitology , Survival Analysis , Time Factors , Trematode Infections/mortality , Trematode Infections/pathology
5.
Ecol Lett ; 11(10): 1017-26, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18616550

ABSTRACT

Changes in host diversity and community structure have been linked to disease, but the mechanisms underlying such relationships and their applicability to non-vector-borne disease systems remain conjectural. Here we experimentally investigated how changes in host community structure affected the transmission and pathology of the multi-host parasite Ribeiroia ondatrae, which is a widespread cause of amphibian limb deformities. We exposed larval amphibians to parasites in monospecific or heterospecific communities, and varied host number to differentiate between density- and diversity-mediated effects on transmission. In monospecific communities, exposure to Ribeiroia significantly increased mortality (15%), malformations (40%) and time-to-metamorphosis in toads. However, the presence of tree frogs significantly reduced infection in toads, leading to fewer malformations and higher survival than observed in monospecific communities, providing evidence of parasite-mediated facilitation. Our results suggest that interspecific variation in parasite resistance can inhibit parasite transmission in multi-species communities, reducing infection and pathology in sensitive hosts.


Subject(s)
Anura/parasitology , Biodiversity , Host-Parasite Interactions , Snails/parasitology , Trematoda/pathogenicity , Trematode Infections/transmission , Animals , Anura/abnormalities , Larva/parasitology , Metamorphosis, Biological , Population Density , Population Dynamics , Trematode Infections/pathology , Trematode Infections/veterinary
6.
Proc Natl Acad Sci U S A ; 104(40): 15781-6, 2007 Oct 02.
Article in English | MEDLINE | ID: mdl-17893332

ABSTRACT

The widespread emergence of human and wildlife diseases has challenged ecologists to understand how large-scale agents of environmental change affect host-pathogen interactions. Accelerated eutrophication of aquatic ecosystems owing to nitrogen and phosphorus enrichment is a pervasive form of environmental change that has been implicated in the emergence of diseases through direct and indirect pathways. We provide experimental evidence linking eutrophication and disease in a multihost parasite system. The trematode parasite Ribeiroia ondatrae sequentially infects birds, snails, and amphibian larvae, frequently causing severe limb deformities and mortality. Eutrophication has been implicated in the emergence of this parasite, but definitive evidence, as well as a mechanistic understanding, have been lacking until now. We show that the effects of eutrophication cascade through the parasite life cycle to promote algal production, the density of snail hosts, and, ultimately, the intensity of infection in amphibians. Infection also negatively affected the survival of developing amphibians. Mechanistically, eutrophication promoted amphibian disease through two distinctive pathways: by increasing the density of infected snail hosts and by enhancing per-snail production of infectious parasites. Given forecasted increases in global eutrophication, amphibian extinctions, and similarities between Ribeiroia and important human and wildlife pathogens, our results have broad epidemiological and ecological significance.


Subject(s)
Amphibians/parasitology , Animal Diseases/classification , Animal Feed , Animals , Animals, Wild , Ecosystem , Environment , Humans , Population Density , Water
SELECTION OF CITATIONS
SEARCH DETAIL