Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 197(12): 4560-4568, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27913646

ABSTRACT

Graves' hyperthyroidism, a common autoimmune disease caused by pathogenic autoantibodies to the thyrotropin (TSH) receptor (TSHR), can be treated but not cured. This single autoantigenic target makes Graves' disease a prime candidate for Ag-specific immunotherapy. Previously, in an induced mouse model, injecting TSHR A-subunit protein attenuated hyperthyroidism by diverting pathogenic TSHR Abs to a nonfunctional variety. In this study, we explored the possibility of a similar diversion in a mouse model that spontaneously develops pathogenic TSHR autoantibodies, NOD.H2h4 mice with the human (h) TSHR (hTSHR) A-subunit transgene expressed in the thyroid and (shown in this article) the thymus. We hypothesized that such diversion would occur after injection of "inactive" hTSHR A-subunit protein recognized only by nonpathogenic (not pathogenic) TSHR Abs. Surprisingly, rather than attenuating the pre-existing pathogenic TSHR level, in TSHR/NOD.H2h4 mice inactive hTSHR Ag injected without adjuvant enhanced the levels of pathogenic TSH-binding inhibition and thyroid-stimulating Abs, as well as nonpathogenic Abs detected by ELISA. This effect was TSHR specific because spontaneously occurring autoantibodies to thyroglobulin and thyroid peroxidase were unaffected. As controls, nontransgenic NOD.H2h4 mice similarly injected with inactive hTSHR A-subunit protein unexpectedly developed TSHR Abs, but only of the nonpathogenic variety detected by ELISA. Our observations highlight critical differences between induced and spontaneous mouse models of Graves' disease with implications for potential immunotherapy in humans. In hTSHR/NOD.H2h4 mice with ongoing disease, injecting inactive hTSHR A-subunit protein fails to divert the autoantibody response to a nonpathogenic form. Indeed, such therapy is likely to enhance pathogenic Ab production and exacerbate Graves' disease in humans.


Subject(s)
Disease Models, Animal , Graves Disease/immunology , Immunotherapy/methods , Receptors, Thyrotropin/metabolism , Thymus Gland/metabolism , Thyroid Gland/metabolism , Animals , Autoantibodies/blood , Autoantigens/immunology , Enzyme-Linked Immunosorbent Assay , Glycoprotein Hormones, alpha Subunit/immunology , Glycoprotein Hormones, alpha Subunit/metabolism , Graves Disease/chemically induced , Graves Disease/genetics , Graves Disease/therapy , Humans , Immunotherapy/trends , Mice , Mice, Inbred NOD , Mice, Transgenic , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/immunology
2.
Biopolymers ; 106(1): 62-71, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26506479

ABSTRACT

One of the major targets of the autoimmune response in the rheumatic autoimmune diseases, Systemic Lupus Erythematosus and Sjögrens Syndrome, is the protein Ro60. Ro60 is known to associate with small misfolded RNAs, and is involved in RNA quality control and in enhancing cell survival during cellular stress, e.g. after ultaviolet irradiation. In this study, six monoclonal antibodies to Ro60 were analyzed in order to identify antigenic regions and the nature of these. Preliminary analyses revealed that two of the antibodies recognized continuous epitopes, while the remaining antibodies most likely recognized conformational epitopes. The continuous epitopes of Ro60 were characterised by modified immunoassays employing resin-bound peptides and free peptides. Peptide screenings located the epitopes to the N-terminus of Ro60, and further analyses indicated that the epitopes of the monoclonal antibodies TROVE2 and SSI-HYB 358-02 were located to amino acids 8-17 and 34-49, respectively. Moreover, charged amino acids were found to be especially important for antibody reactivity, although antibody reactivity of the monoclonal antibody TROVE2 primarily was found to be epitope backbone-dependent.


Subject(s)
Antibodies, Monoclonal/chemistry , Epitopes/chemistry , Ribonucleoproteins/chemistry , Amino Acid Sequence , Animals , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique, Indirect , Humans , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...