Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Clin Oncol ; 42(2): 218-227, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37890117

ABSTRACT

PURPOSE: Patients with Down syndrome (DS) and B-ALL experience increased rates of relapse, toxicity, and death. We report results for patients with DS B-ALL enrolled on Children's Oncology Group trials between 2003 and 2019. METHODS: We analyzed data for DS (n = 743) and non-DS (n = 20,067) patients age 1-30 years on four B-ALL standard-risk (SR) and high-risk trials. RESULTS: Patients with DS exhibited more frequent minimal residual disease (MRD) ≥0.01% at end induction (30.8% v 21.5%; P < .001). This difference persisted at end consolidation only in National Cancer Institute (NCI) high-risk patients (34.0% v 11.7%; P < .0001). Five-year event-free survival (EFS) and overall survival (OS) were significantly poorer for DS versus non-DS patients overall (EFS, 79.2% ± 1.6% v 87.5% ± 0.3%; P < .0001; OS, 86.8% ± 1.4% v 93.6% ± 0.2%; P < .0001), and within NCI SR and high-risk subgroups. Multivariable Cox regression analysis of the DS cohort for risk factors associated with inferior EFS identified age >10 years, white blood count >50 × 103/µL, and end-induction MRD ≥0.01%, but not cytogenetics or CRLF2 overexpression. Patients with DS demonstrated higher 5-year cumulative incidence of relapse (11.5% ± 1.2% v 9.1% ± 0.2%; P = .0008), death in remission (4.9% ± 0.8% v 1.7% ± 0.1%; P < .0001), and induction death (3.4% v 0.8%; P < .0001). Mucositis, infections, and hyperglycemia were significantly more frequent in all patients with DS, while seizures were more frequent in patients with DS on high-risk trials (4.1% v 1.8%; P = .005). CONCLUSION: Patients with DS-ALL exhibit an increased rate of relapse and particularly of treatment-related mortality. Novel, less-toxic therapeutic strategies are needed to improve outcomes.


Subject(s)
Down Syndrome , Child , Humans , Adolescent , Young Adult , Infant , Child, Preschool , Adult , Down Syndrome/complications , Down Syndrome/therapy , Treatment Outcome , Disease-Free Survival , Neoplasm Recurrence, Local/complications , Recurrence , Neoplasm, Residual
3.
Nat Genet ; 54(9): 1376-1389, 2022 09.
Article in English | MEDLINE | ID: mdl-36050548

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Here, using whole-genome, exome and transcriptome sequencing of 2,754 childhood patients with ALL, we find that, despite a generally low mutation burden, ALL cases harbor a median of four putative somatic driver alterations per sample, with 376 putative driver genes identified varying in prevalence across ALL subtypes. Most samples harbor at least one rare gene alteration, including 70 putative cancer driver genes associated with ubiquitination, SUMOylation, noncoding transcripts and other functions. In hyperdiploid B-ALL, chromosomal gains are acquired early and synchronously before ultraviolet-induced mutation. By contrast, ultraviolet-induced mutations precede chromosomal gains in B-ALL cases with intrachromosomal amplification of chromosome 21. We also demonstrate the prognostic significance of genetic alterations within subtypes. Intriguingly, DUX4- and KMT2A-rearranged subtypes separate into CEBPA/FLT3- or NFATC4-expressing subgroups with potential clinical implications. Together, these results deepen understanding of the ALL genomic landscape and associated outcomes.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Chromosome Aberrations , Exome/genetics , Genomics , Humans , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
4.
J Clin Oncol ; 40(14): 1574-1582, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35157496

ABSTRACT

PURPOSE: Chemotherapy outcomes in older patients with Philadelphia (Ph) chromosome-negative B-acute lymphoblastic leukemia (ALL) are very poor. Here, we evaluated blinatumomab as induction and consolidation therapy followed by prednisone, vincristine, 6-mercaptopurine, and methotrexate (POMP) maintenance chemotherapy in this patient population. PATIENTS AND METHODS: Patients were treated at National Clinical Trial Network sites. Eligibility criteria included age ≥ 65 years and newly diagnosed Ph chromosome-negative B-ALL. Patients received blinatumomab as induction for one-two cycles until attainment of response (complete remission (CR) and CR with incomplete count recovery). Patients then received three cycles of consolidation with blinatumomab followed by 18 months of POMP maintenance chemotherapy. Eight doses of intrathecal methotrexate were administered as central nervous system prophylaxis. RESULTS: Twenty-nine eligible patients were enrolled. The median age was 75 years, and the median bone marrow blast count at diagnosis was 87%. Cytogenetic risk was poor in 10 patients (34%), and five of 14 patients (36%) tested had the Ph-like ALL gene signature. Nineteen patients (66%; 95% CI, 46 to 82) achieved CR. Kaplan-Meier 3-year disease-free survival and overall survival estimates were 37% (95% CI, 17 to 57) and 37% (95% CI, 20 to 55), respectively. CONCLUSION: Blinatumomab was well tolerated and effective in the treatment of older patients with newly diagnosed Ph chromosome-negative B-ALL, including patients with poor-risk cytogenetics. The 3-year disease-free survival and overall survival results are encouraging and suggest that this approach should be further explored.


Subject(s)
Antibodies, Bispecific , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Aged , Antibodies, Bispecific/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Humans , Lymphoma, B-Cell/drug therapy , Methotrexate , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
5.
Cancer Res ; 80(23): 5189-5202, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33067268

ABSTRACT

Although B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy in children and while highly curable, it remains a leading cause of cancer-related mortality. The outgrowth of tumor subclones carrying mutations in genes responsible for resistance to therapy has led to a Darwinian model of clonal selection. Previous work has indicated that alterations in the epigenome might contribute to clonal selection, yet the extent to which the chromatin state is altered under the selective pressures of therapy is unknown. To address this, we performed chromatin immunoprecipitation, gene expression analysis, and enhanced reduced representation bisulfite sequencing on a cohort of paired diagnosis and relapse samples from individual patients who all but one relapsed within 36 months of initial diagnosis. The chromatin state at diagnosis varied widely among patients, while the majority of peaks remained stable between diagnosis and relapse. Yet a significant fraction was either lost or newly gained, with some patients showing few differences and others showing massive changes of the epigenetic state. Evolution of the epigenome was associated with pathways previously linked to therapy resistance as well as novel candidate pathways through alterations in pyrimidine biosynthesis and downregulation of polycomb repressive complex 2 targets. Three novel, relapse-specific superenhancers were shared by a majority of patients including one associated with S100A8, the top upregulated gene seen at relapse in childhood B-ALL. Overall, our results support a role of the epigenome in clonal evolution and uncover new candidate pathways associated with relapse. SIGNIFICANCE: This study suggests a major role for epigenetic mechanisms in driving clonal evolution in B-ALL and identifies novel pathways associated with drug resistance.


Subject(s)
Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Child , Child, Preschool , Chromatin/genetics , Clonal Evolution , DNA Methylation , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Leukemic , Histones/genetics , Humans , Male , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Promoter Regions, Genetic , Recurrence
6.
Blood Adv ; 4(1): 218-228, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31935290

ABSTRACT

Philadelphia chromosome-like B-cell acute lymphoblastic leukemia (Ph-like ALL) accounts for 15% to 30% of B-cell acute lymphoblastic leukemia in older children, adolescents, and adults and is associated with high rates of conventional treatment failure and relapse. Current clinical trials are assessing the efficacy of the addition of tyrosine kinase inhibitors (TKIs) to chemotherapy for children and adults with Ph-like ALL harboring ABL class translocations or CRLF2 rearrangements and other JAK pathway alterations. However, real-time diagnosis of patients can be quite challenging given the genetic heterogeneity of this disease and the often cytogenetically cryptic nature of Ph-like ALL-associated alterations. In this review, we discuss the complex biologic and clinical features of Ph-like ALL across the age spectrum, available diagnostic testing modalities, and current clinical treatment strategies for these high-risk patients. We further propose a practical and step-wise approach to Ph-like ALL genetic testing to facilitate the identification and allocation of patients to appropriate clinical trials of TKI-based therapies or commercially available drugs. Although the majority of patients with Ph-like ALL can be successfully identified via current clinical assays by the end of induction chemotherapy, increasing diagnostic efficiency and sensitivity and decreasing time to test resulting will facilitate earlier therapeutic intervention and may improve clinical outcomes for these high-risk patients.


Subject(s)
Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Adult , Child , Humans , Induction Chemotherapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Kinase Inhibitors/therapeutic use
7.
Cancer Genet ; 238: 62-68, 2019 10.
Article in English | MEDLINE | ID: mdl-31425927

ABSTRACT

Hyperdiploidy with greater than 50 chromosomes is usually associated with favorable prognosis in pediatric acute lymphoblastic leukemia (ALL), whereas hypodiploidy with ≤43 chromosomes is associated with extremely poor prognosis. Sometimes, hypodiploidy is "masked" and patients do not have a karyotypically visible clone with ≤43 chromosomes. Instead, their abnormal karyotypes contain 50-78 or more chromosomes from doubling of previously hypodiploid cells. When the hypodiploid and doubled hyperdiploid clones are both present, patients can be identified by traditional test methods [karyotype, DNA Index (DI), fluorescence in situ hybridization (FISH)], but the incidence of masked hypodiploid cases in which only the doubled clone is visible is unknown. We analyzed 7013 patients with B-ALL enrolled in COG AALL03B1 (2003-2011) for whom chromosome studies were available. Of 115 patients with hypodiploidy (25-39 chromosomes), karyotypes of 40 showed only the hypodiploid clone, 47 showed mosaicism with both hypodiploid and hyperdiploid (doubled) karyotypes, and 28 with masked hypodiploidy showed only a hyperdiploid (doubled) clone. Unique karyotypic signatures were identified, and widespread loss of heterozygosity (LOH) was seen in the microsatellite panel for all patients with masked hypodiploidy. An increased awareness of the unusual karyotypic profile associated with a doubled hypodiploid clone and coordinated use of DI, FISH, and LOH studies when indicated can identify patients with masked hypodiploidy and allow appropriate treatment selection.


Subject(s)
Diploidy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Child , Chromosomes, Human , Humans , Karyotyping , Mosaicism
8.
Blood ; 133(14): 1548-1559, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30658992

ABSTRACT

Retrospective studies have suggested that older adolescents and young adults (AYAs) with acute lymphoblastic leukemia (ALL) have better survival rates when treated using a pediatric ALL regimen administered by pediatric treatment teams. To address the feasibility and efficacy of using a pediatric treatment regimen for AYA patients with newly diagnosed ALL administered by adult treatment teams, we performed a prospective study, CALGB 10403, with doses and schedule identical to those in the Children's Oncology Group study AALL0232. From 2007 to 2012, 318 patients were enrolled; 295 were eligible and evaluable for response. Median age was 24 years (range, 17-39 years). Use of the pediatric regimen was safe; overall treatment-related mortality was 3%, and there were only 2 postremission deaths. Median event-free survival (EFS) was 78.1 months (95% confidence interval [CI], 41.8 to not reached), more than double the historical control of 30 months (95% CI, 22-38 months); 3-year EFS was 59% (95% CI, 54%-65%). Median overall survival (OS) was not reached. Estimated 3-year OS was 73% (95% CI, 68%-78%). Pretreatment risk factors associated with worse treatment outcomes included obesity and presence of the Philadelphia-like gene expression signature. Use of a pediatric regimen for AYAs with ALL up to age 40 years was feasible and effective, resulting in improved survival rates compared with historical controls. CALGB 10403 can be considered a new treatment standard upon which to build for improving survival for AYAs with ALL. This trial was registered at www.clinicaltrials.gov as #NCT00558519.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Adolescent , Adult , Drug Administration Schedule , Female , Historically Controlled Study , Humans , Male , Obesity , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prospective Studies , Risk Factors , Survival Analysis , Treatment Outcome , Young Adult
9.
Oncogene ; 38(13): 2241-2262, 2019 03.
Article in English | MEDLINE | ID: mdl-30478448

ABSTRACT

The poor outcomes in infant acute lymphoblastic leukemia (ALL) necessitate new treatments. Here we discover that EIF4E protein is elevated in most cases of infant ALL and test EIF4E targeting by the repurposed antiviral agent ribavirin, which has anticancer properties through EIF4E inhibition, as a potential treatment. We find that ribavirin treatment of actively dividing infant ALL cells on bone marrow stromal cells (BMSCs) at clinically achievable concentrations causes robust proliferation inhibition in proportion with EIF4E expression. Further, we find that ribavirin treatment of KMT2A-rearranged (KMT2A-R) infant ALL cells and the KMT2A-AFF1 cell line RS4:11 inhibits EIF4E, leading to decreases in oncogenic EIF4E-regulated cell growth and survival proteins. In ribavirin-sensitive KMT2A-R infant ALL cells and RS4:11 cells, EIF4E-regulated proteins with reduced levels of expression following ribavirin treatment include MYC, MCL1, NBN, BCL2 and BIRC5. Ribavirin-treated RS4:11 cells exhibit impaired EIF4E-dependent nuclear to cytoplasmic export and/or translation of the corresponding mRNAs, as well as reduced phosphorylation of the p-AKT1, p-EIF4EBP1, p-RPS6 and p-EIF4E signaling proteins. This leads to an S-phase cell cycle arrest in RS4:11 cells corresponding to the decreased proliferation. Ribavirin causes nuclear EIF4E to re-localize to the cytoplasm in KMT2A-AFF1 infant ALL and RS4:11 cells, providing further evidence for EIF4E inhibition. Ribavirin slows increases in peripheral blasts in KMT2A-R infant ALL xenograft-bearing mice. Ribavirin cooperates with chemotherapy, particularly L-asparaginase, in reducing live KMT2A-AFF1 infant ALL cells in BMSC co-cultures. This work establishes that EIF4E is broadly elevated across infant ALL and that clinically relevant ribavirin exposures have preclinical activity and effectively inhibit EIF4E in KMT2A-R cases, suggesting promise in EIF4E targeting using ribavirin as a means of treatment.


Subject(s)
Eukaryotic Initiation Factor-4E/genetics , Molecular Targeted Therapy/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Ribavirin/therapeutic use , Cell Line, Tumor , Child, Preschool , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Eukaryotic Initiation Factor-4E/physiology , Gene Expression Profiling , Gene Expression Regulation, Leukemic/drug effects , Humans , Indoles , Infant , Microarray Analysis , Multigene Family/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Biosynthesis/drug effects , Pyrroles/therapeutic use , Signal Transduction/drug effects
10.
Blood ; 132(8): 815-824, 2018 08 23.
Article in English | MEDLINE | ID: mdl-29997224

ABSTRACT

Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL; BCR-ABL1-like ALL) in children with National Cancer Institute (NCI) intermediate- or high-risk (HR) ALL is associated with poor outcome. Ph-like ALL is characterized by genetic alterations that activate cytokine receptor and kinase signaling and may be amenable to treatment with tyrosine kinase inhibitors. The prevalence, outcome, and potential for targeted therapy of Ph-like ALL in standard-risk (SR) ALL is less clear. We retrospectively analyzed a cohort of 1023 SR childhood B-ALL consecutively enrolled in the Children's Oncology Group AALL0331 clinical trial. The Ph-like ALL gene expression profile was identified in 206 patients, and 67 patients with either BCR-ABL1 (n = 6) or ETV6-RUNX1 (n = 61) were excluded from downstream analysis, leaving 139 of 1023 (13.6%) as Ph-like. Targeted reverse transcription polymerase chain reaction assays and RNA-sequencing identified kinase-activating alterations in 38.8% of SR Ph-like cases, including CRLF2 rearrangements (29.5% of Ph-like), ABL-class fusions (1.4%), JAK2 fusions (1.4%), an NTRK3 fusion (0.7%), and other sequence mutations (IL7R, KRAS, NRAS; 5.6%). Patients with Ph-like ALL had inferior 7-year event-free survival compared with non-Ph-like ALL (82.4 ± 3.6% vs 90.7 ± 1.0%, P = .0022), with no difference in overall survival (93.2 ± 2.4% vs 95.8 ± 0.7%, P = .14). These findings illustrate the significant differences in the spectrum of kinase alterations and clinical outcome of Ph-like ALL based on presenting clinical features and establish that genomic alterations potentially targetable with approved kinase inhibitors are less frequent in SR than in HR ALL.


Subject(s)
Neoplasm Proteins/genetics , Philadelphia Chromosome , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Child , Child, Preschool , Disease-Free Survival , Female , Humans , Infant , Male , National Cancer Institute (U.S.) , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Retrospective Studies , Survival Rate , United States
12.
Nat Genet ; 49(8): 1211-1218, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28671688

ABSTRACT

Genetic alterations that activate NOTCH1 signaling and T cell transcription factors, coupled with inactivation of the INK4/ARF tumor suppressors, are hallmarks of T-lineage acute lymphoblastic leukemia (T-ALL), but detailed genome-wide sequencing of large T-ALL cohorts has not been carried out. Using integrated genomic analysis of 264 T-ALL cases, we identified 106 putative driver genes, half of which had not previously been described in childhood T-ALL (for example, CCND3, CTCF, MYB, SMARCA4, ZFP36L2 and MYCN). We describe new mechanisms of coding and noncoding alteration and identify ten recurrently altered pathways, with associations between mutated genes and pathways, and stage or subtype of T-ALL. For example, NRAS/FLT3 mutations were associated with immature T-ALL, JAK3/STAT5B mutations in HOXA1 deregulated ALL, PTPN2 mutations in TLX1 deregulated T-ALL, and PIK3R1/PTEN mutations in TAL1 deregulated ALL, which suggests that different signaling pathways have distinct roles according to maturational stage. This genomic landscape provides a logical framework for the development of faithful genetic models and new therapeutic approaches.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Adult , Cell Lineage , Child , Child, Preschool , Cohort Studies , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Rearrangement , Genomics , Humans , Middle Aged , Mutation , Receptor, Notch1/metabolism , Signal Transduction/genetics , Young Adult
13.
Blood ; 129(25): 3352-3361, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28408464

ABSTRACT

Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype characterized by genomic alterations that activate cytokine receptor and kinase signaling. We examined the frequency and spectrum of targetable genetic lesions in a retrospective cohort of 1389 consecutively diagnosed patients with childhood B-lineage ALL with high-risk clinical features and/or elevated minimal residual disease at the end of remission induction therapy. The Ph-like gene expression profile was identified in 341 of 1389 patients, 57 of whom were excluded from additional analyses because of the presence of BCR-ABL1 (n = 46) or ETV6-RUNX1 (n = 11). Among the remaining 284 patients (20.4%), overexpression and rearrangement of CRLF2 (IGH-CRLF2 or P2RY8-CRLF2) were identified in 124 (43.7%), with concomitant genomic alterations activating the JAK-STAT pathway (JAK1, JAK2, IL7R) identified in 63 patients (50.8% of those with CRLF2 rearrangement). Among the remaining patients, using reverse transcriptase polymerase chain reaction or transcriptome sequencing, we identified targetable ABL-class fusions (ABL1, ABL2, CSF1R, and PDGFRB) in 14.1%, EPOR rearrangements or JAK2 fusions in 8.8%, alterations activating other JAK-STAT signaling genes (IL7R, SH2B3, JAK1) in 6.3% or other kinases (FLT3, NTRK3, LYN) in 4.6%, and mutations involving the Ras pathway (KRAS, NRAS, NF1, PTPN11) in 6% of those with Ph-like ALL. We identified 8 new rearrangement partners for 4 kinase genes previously reported to be rearranged in Ph-like ALL. The current findings provide support for the precision-medicine testing and treatment approach for Ph-like ALL implemented in Children's Oncology Group ALL trials.


Subject(s)
Gene Fusion , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Kinases/genetics , Child , Female , Fusion Proteins, bcr-abl/genetics , Gene Expression Regulation, Leukemic , Humans , Interleukin-7 Receptor alpha Subunit/genetics , Janus Kinase 2/genetics , Male , Mutation , Philadelphia Chromosome , Receptors, Cytokine/genetics , Retrospective Studies , Transcriptome
14.
Blood ; 129(2): 177-187, 2017 01 12.
Article in English | MEDLINE | ID: mdl-27777238

ABSTRACT

Philadelphia chromosome (Ph)-like B-cell acute lymphoblastic leukemia (Ph-like ALL) is associated with activated JAK/STAT, Abelson kinase (ABL), and/or phosphatidylinositol 3-kinase (PI3K) signaling and poor clinical outcomes. PI3K pathway signaling inhibitors have been minimally investigated in Ph-like ALL. We hypothesized that targeted inhibition of PI3Kα, PI3Kδ, PI3K/mTOR, or target of rapamycin complex 1/2 (TORC1/TORC2) would decrease leukemia proliferation and abrogate aberrant kinase signaling and that combined PI3K pathway and JAK inhibition or PI3K pathway and SRC/ABL inhibition would have superior efficacy compared to inhibitor monotherapy. We treated 10 childhood ALL patient-derived xenograft models harboring various Ph-like genomic alterations with 4 discrete PI3K pathway protein inhibitors and observed marked leukemia reduction and in vivo signaling inhibition in all models. Treatment with dual PI3K/mTOR inhibitor gedatolisib resulted in near eradication of ALL in cytokine receptor-like factor 2 (CRLF2)/JAK-mutant models with mean 92.2% (range, 86.0%-99.4%) reduction vs vehicle controls (P < .0001) and in prolonged animal survival. Gedatolisib also inhibited ALL proliferation in ABL/platelet-derived growth factor receptor (PDGFR)-mutant models with mean 66.9% (range, 42.0%-87.6%) reduction vs vehicle (P < .0001). Combined gedatolisib and ruxolitinib treatment of CRLF2/JAK-mutant models more effectively inhibited ALL proliferation than either inhibitor alone (P < .001) and further enhanced survival. Similarly, superior efficacy of combined gedatolisib and dasatinib was observed in ABL/PDGFR-mutant models (P < .001). Overall, PI3K/mTOR inhibition potently decreased ALL burden in vivo; antileukemia activity was further enhanced with combination inhibitor therapy. Clinical trials testing combinations of kinase inhibitors in Ph-like ALL patients are indicated.


Subject(s)
Antineoplastic Agents/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Animals , Cell Proliferation/drug effects , Humans , Janus Kinases/antagonists & inhibitors , Mice , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Random Allocation , TOR Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays
15.
Blood ; 129(5): 572-581, 2017 02 02.
Article in English | MEDLINE | ID: mdl-27919910

ABSTRACT

Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL) is a high-risk subtype of ALL in children. There are conflicting data on the incidence and prognosis of Ph-like ALL in adults. Patients with newly diagnosed B-cell ALL (B-ALL) who received frontline chemotherapy at MD Anderson Cancer Center underwent gene expression profiling of leukemic cells. Of 148 patients, 33.1% had Ph-like, 31.1% had Ph+, and 35.8% had other B-ALL subtypes (B-other). Within the Ph-like ALL cohort, 61% had cytokine receptor-like factor 2 (CRLF2) overexpression. Patients with Ph-like ALL had significantly worse overall survival (OS), and event-free survival compared with B-other with a 5-year survival of 23% (vs 59% for B-other, P = .006). Sixty-eight percent of patients with Ph-like ALL were of Hispanic ethnicity. The following were associated with inferior OS on multivariable analysis: age (hazard ratio [HR], 3.299; P < .001), white blood cell count (HR, 1.910; P = .017), platelet count (HR, 7.437; P = .005), and Ph-like ALL (HR, 1.818; P = .03). Next-generation sequencing of the CRLF2+ group identified mutations in the JAK-STAT and Ras pathway in 85% of patients, and 20% had a CRLF2 mutation. Within the CRLF2+ group, JAK2 mutation was associated with inferior outcomes. Our findings show high frequency of Ph-like ALL in adults, an increased frequency of Ph-like ALL in adults of Hispanic ethnicity, significantly inferior outcomes of adult patients with Ph-like ALL, and significantly worse outcomes in the CRLF2+ subset of Ph-like ALL. Novel strategies are needed to improve the outcome of these patients.


Subject(s)
Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Cohort Studies , Disease-Free Survival , Female , Gene Expression Regulation, Leukemic , Hispanic or Latino/genetics , Humans , Janus Kinase 2/genetics , Male , Middle Aged , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proportional Hazards Models , Receptors, Cytokine/genetics , Risk Factors , Transcriptome , Treatment Outcome , Young Adult
16.
J Clin Oncol ; 35(4): 394-401, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27870571

ABSTRACT

Purpose Philadelphia chromosome (Ph) -like acute lymphoblastic leukemia (ALL) is a high-risk subtype of childhood ALL characterized by kinase-activating alterations that are amenable to treatment with tyrosine kinase inhibitors. We sought to define the prevalence and genomic landscape of Ph-like ALL in adults and assess response to conventional chemotherapy. Patients and Methods The frequency of Ph-like ALL was assessed by gene expression profiling of 798 patients with B-cell ALL age 21 to 86 years. Event-free survival and overall survival were determined for Ph-like ALL versus non-Ph-like ALL patients. Detailed genomic analysis was performed on 180 of 194 patients with Ph-like ALL. Results Patients with Ph-like ALL accounted for more than 20% of adults with ALL, including 27.9% of young adults (age 21 to 39 years), 20.4% of adults (age 40 to 59 years), and 24.0% of older adults (age 60 to 86 years). Overall, patients with Ph-like ALL had an inferior 5-year event-free survival compared with patients with non-Ph-like ALL (22.5% [95% CI, 14.9% to 29.3%; n = 155] v 49.3% [95% CI, 42.8% to 56.2%; n = 247], respectively; P < .001). We identified kinase-activating alterations in 88% of patients with Ph-like ALL, including CRLF2 rearrangements (51%), ABL class fusions (9.8%), JAK2 or EPOR rearrangements (12.4%), other JAK-STAT sequence mutations (7.2%), other kinase alterations (4.1%), and Ras pathway mutations (3.6%). Eleven new kinase rearrangements were identified, including four involving new kinase or cytokine receptor genes and seven involving new partners for previously identified genes. Conclusion Ph-like ALL is a highly prevalent subtype of ALL in adults and is associated with poor outcome. The diverse range of kinase-activating alterations in Ph-like ALL has important therapeutic implications. Trials comparing the addition of tyrosine kinase inhibitors to conventional therapy are required to evaluate the clinical utility of these agents in the treatment of Ph-like ALL.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Adult , Age Factors , Aged , Aged, 80 and over , Female , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis , Treatment Outcome , Young Adult
17.
Nat Commun ; 7: 13331, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27824051

ABSTRACT

Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2D-BCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered.


Subject(s)
Genomics/methods , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Base Sequence , Gene Expression Regulation, Leukemic , Gene Rearrangement/genetics , Histone Deacetylase Inhibitors/pharmacology , Humans , Luciferases/metabolism , MEF2 Transcription Factors/genetics , Mice , NIH 3T3 Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Sequence Analysis, RNA , Transcriptome , Treatment Outcome
18.
Haematologica ; 101(9): 1082-93, 2016 09.
Article in English | MEDLINE | ID: mdl-27229714

ABSTRACT

To characterize the incidence, clinical features and genetics of ETV6-ABL1 leukemias, representing targetable kinase-activating lesions, we analyzed 44 new and published cases of ETV6-ABL1-positive hematologic malignancies [22 cases of acute lymphoblastic leukemia (13 children, 9 adults) and 22 myeloid malignancies (18 myeloproliferative neoplasms, 4 acute myeloid leukemias)]. The presence of the ETV6-ABL1 fusion was ascertained by cytogenetics, fluorescence in-situ hybridization, reverse transcriptase-polymerase chain reaction and RNA sequencing. Genomic and gene expression profiling was performed by single nucleotide polymorphism and expression arrays. Systematic screening of more than 4,500 cases revealed that in acute lymphoblastic leukemia ETV6-ABL1 is rare in childhood (0.17% cases) and slightly more common in adults (0.38%). There is no systematic screening of myeloproliferative neoplasms; however, the number of ETV6-ABL1-positive cases and the relative incidence of acute lymphoblastic leukemia and myeloproliferative neoplasms suggest that in adulthood ETV6-ABL1 is more common in BCR-ABL1-negative chronic myeloid leukemia-like myeloproliferations than in acute lymphoblastic leukemia. The genomic profile of ETV6-ABL1 acute lymphoblastic leukemia resembled that of BCR-ABL1 and BCR-ABL1-like cases with 80% of patients having concurrent CDKN2A/B and IKZF1 deletions. In the gene expression profiling all the ETV6-ABL1-positive samples clustered in close vicinity to BCR-ABL1 cases. All but one of the cases of ETV6-ABL1 acute lymphoblastic leukemia were classified as BCR-ABL1-like by a standardized assay. Over 60% of patients died, irrespectively of the disease or age subgroup examined. In conclusion, ETV6-ABL1 fusion occurs in both lymphoid and myeloid leukemias; the genomic profile and clinical behavior resemble BCR-ABL1-positive malignancies, including the unfavorable prognosis, particularly of acute leukemias. The poor outcome suggests that treatment with tyrosine kinase inhibitors should be considered for patients with this fusion.


Subject(s)
Leukemia/genetics , Oncogene Proteins, Fusion/genetics , Protein-Tyrosine Kinases/genetics , Adolescent , Adult , Aged , Alternative Splicing , Child , Child, Preschool , Cluster Analysis , DNA Copy Number Variations , Female , Gene Expression Profiling , Humans , In Situ Hybridization, Fluorescence , Infant , Leukemia/diagnosis , Leukemia/mortality , Leukemia/therapy , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Transcriptome , Translocation, Genetic , Young Adult
19.
Cancer Cell ; 29(2): 186-200, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26859458

ABSTRACT

Chromosomal rearrangements are a hallmark of acute lymphoblastic leukemia (ALL) and are important ALL initiating events. We describe four different rearrangements of the erythropoietin receptor gene EPOR in Philadelphia chromosome-like (Ph-like) ALL. All of these rearrangements result in truncation of the cytoplasmic tail of EPOR at residues similar to those mutated in primary familial congenital polycythemia, with preservation of the proximal tyrosine essential for receptor activation and loss of distal regulatory residues. This resulted in deregulated EPOR expression, hypersensitivity to erythropoietin stimulation, and heightened JAK-STAT activation. Expression of truncated EPOR in mouse B cell progenitors induced ALL in vivo. Human leukemic cells with EPOR rearrangements were sensitive to JAK-STAT inhibition, suggesting a therapeutic option in high-risk ALL.


Subject(s)
Gene Order , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Erythropoietin/genetics , Amino Acid Sequence , Antineoplastic Agents/therapeutic use , Base Sequence , Humans , Molecular Sequence Data , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
20.
Nat Commun ; 6: 6604, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25790293

ABSTRACT

There is incomplete understanding of genetic heterogeneity and clonal evolution during cancer progression. Here we use deep whole-exome sequencing to describe the clonal architecture and evolution of 20 pediatric B-acute lymphoblastic leukaemias from diagnosis to relapse. We show that clonal diversity is comparable at diagnosis and relapse and clonal survival from diagnosis to relapse is not associated with mutation burden. Six pathways were frequently mutated, with NT5C2, CREBBP, WHSC1, TP53, USH2A, NRAS and IKZF1 mutations enriched at relapse. Half of the leukaemias had multiple subclonal mutations in a pathway or gene at diagnosis, but mostly with only one, usually minor clone, surviving therapy to acquire additional mutations and become the relapse founder clone. Relapse-specific mutations in NT5C2 were found in nine cases, with mutations in four cases being in descendants of the relapse founder clone. These results provide important insights into the genetic basis of treatment failure in ALL and have implications for the early detection of mutations driving relapse.


Subject(s)
Clonal Evolution/genetics , Neoplasm Recurrence, Local/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , 5'-Nucleotidase/genetics , CREB-Binding Protein/genetics , Child , Clone Cells , DNA Copy Number Variations , Disease Progression , Exome , Extracellular Matrix Proteins/genetics , Female , GTP Phosphohydrolases/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Ikaros Transcription Factor/genetics , Male , Membrane Proteins/genetics , Mutation , Repressor Proteins/genetics , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...