Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Adv Sci (Weinh) ; : e2307963, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602451

ABSTRACT

In recent decades, the role of tumor biomechanics on cancer cell behavior at the primary site has been increasingly appreciated. However, the effect of primary tumor biomechanics on the latter stages of the metastatic cascade, such as metastatic seeding of secondary sites and outgrowth remains underappreciated. This work sought to address this in the context of triple negative breast cancer (TNBC), a cancer type known to aggressively disseminate at all stages of disease progression. Using mechanically tuneable model systems, mimicking the range of stiffness's typically found within breast tumors, it is found that, contrary to expectations, cancer cells exposed to softer microenvironments are more able to colonize secondary tissues. It is shown that heightened cell survival is driven by enhanced metabolism of fatty acids within TNBC cells exposed to softer microenvironments. It is demonstrated that uncoupling cellular mechanosensing through integrin ß1 blocking antibody effectively causes stiff primed TNBC cells to behave like their soft counterparts, both in vitro and in vivo. This work is the first to show that softer tumor microenvironments may be contributing to changes in disease outcome by imprinting on TNBC cells a greater metabolic flexibility and conferring discrete cell survival advantages.

2.
Dev Cell ; 59(1): 91-107.e6, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38091997

ABSTRACT

Genomic regulation of cardiomyocyte differentiation is central to heart development and function. This study uses genetic loss-of-function human-induced pluripotent stem cell-derived cardiomyocytes to evaluate the genomic regulatory basis of the non-DNA-binding homeodomain protein HOPX. We show that HOPX interacts with and controls cardiac genes and enhancer networks associated with diverse aspects of heart development. Using perturbation studies in vitro, we define how upstream cell growth and proliferation control HOPX transcription to regulate cardiac gene programs. We then use cell, organoid, and zebrafish regeneration models to demonstrate that HOPX-regulated gene programs control cardiomyocyte function in development and disease. Collectively, this study mechanistically links cell signaling pathways as upstream regulators of HOPX transcription to control gene programs underpinning cardiomyocyte identity and function.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Humans , Myocytes, Cardiac/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Zebrafish/metabolism , Cell Differentiation/genetics , Cell Proliferation
3.
Sci Rep ; 13(1): 14995, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37696945

ABSTRACT

Despite the high prevalence of heart failure in the western world, there are few effective treatments. Fibulin-3 is a protein involved in extracellular matrix (ECM) structural integrity, however its role in the heart is unknown. We have demonstrated, using single cell RNA-seq, that fibulin-3 was highly expressed in quiescent murine cardiac fibroblasts, with expression highest prior to injury and late post-infarct (from ~ day-28 to week-8). In humans, fibulin-3 was upregulated in left ventricular tissue and plasma of heart failure patients. Fibulin-3 knockout (Efemp1-/-) and wildtype mice were subjected to experimental myocardial infarction. Fibulin-3 deletion resulted in significantly higher rate of cardiac rupture days 3-6 post-infarct, indicating a weak and poorly formed scar, with severe ventricular remodelling in surviving mice at day-28 post-infarct. Fibulin-3 knockout mice demonstrated less collagen deposition at day-3 post-infarct, with abnormal collagen fibre-alignment. RNA-seq on day-3 infarct tissue revealed upregulation of ECM degradation and inflammatory genes, but downregulation of ECM assembly/structure/organisation genes in fibulin-3 knockout mice. GSEA pathway analysis showed enrichment of inflammatory pathways and a depletion of ECM organisation pathways. Fibulin-3 originates from cardiac fibroblasts, is upregulated in human heart failure, and is necessary for correct ECM organisation/structural integrity of fibrotic tissue to prevent cardiac rupture post-infarct.


Subject(s)
Extracellular Matrix Proteins , Heart Failure , Heart Rupture , Myocardial Infarction , Animals , Humans , Mice , Heart , Heart Failure/genetics , Heart Rupture/genetics , Myocardial Infarction/complications , Myocardial Infarction/genetics , Extracellular Matrix Proteins/genetics
4.
Science ; 381(6659): 799-804, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37590348

ABSTRACT

Piezo channels are critical cellular sensors of mechanical forces. Despite their large size, ubiquitous expression, and irreplaceable roles in an ever-growing list of physiological processes, few Piezo channel-binding proteins have emerged. In this work, we found that MyoD (myoblast determination)-family inhibitor proteins (MDFIC and MDFI) are PIEZO1/2 interacting partners. These transcriptional regulators bind to PIEZO1/2 channels, regulating channel inactivation. Using single-particle cryogenic electron microscopy, we mapped the interaction site in MDFIC to a lipidated, C-terminal helix that inserts laterally into the PIEZO1 pore module. These Piezo-interacting proteins fit all the criteria for auxiliary subunits, contribute to explaining the vastly different gating kinetics of endogenous Piezo channels observed in many cell types, and elucidate mechanisms potentially involved in human lymphatic vascular disease.


Subject(s)
Ion Channels , Myogenic Regulatory Factors , Humans , Cryoelectron Microscopy , HEK293 Cells , Ion Channel Gating , Ion Channels/chemistry , Ion Channels/genetics , Ion Channels/metabolism , Kinetics , Lymphatic Diseases/genetics , Mutation , Myogenic Regulatory Factors/chemistry , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Protein Domains , Myoblasts/metabolism , Animals , Mice
5.
JACC Basic Transl Sci ; 8(6): 658-674, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37426530

ABSTRACT

After myocardial infarction (MI), fibroblasts progress from proliferative to myofibroblast states, resulting in fibrosis. Platelet-derived growth factors (PDGFs) are reported to induce fibroblast proliferation, myofibroblast differentiation, and fibrosis. However, we have previously shown that PDGFs improve heart function post-MI without increasing fibrosis. We treated human cardiac fibroblasts with PDGF isoforms then performed RNA sequencing to show that PDGFs reduced cardiac fibroblasts myofibroblast differentiation and downregulated cell cycle pathways. Using mouse/pig MI models, we reveal that PDGF-AB infusion increases cell-cell interactions, reduces myofibroblast differentiation, does not affect proliferation, and accelerates scar formation. RNA sequencing of pig hearts after MI showed that PDGF-AB reduces inflammatory cytokines and alters both transcript variants and long noncoding RNA expression in cell cycle pathways. We propose that PDGF-AB could be used therapeutically to manipulate post-MI scar maturation with subsequent beneficial effects on cardiac function.

6.
Stem Cell Res Ther ; 14(1): 183, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37501071

ABSTRACT

BACKGROUND: Atrial fibrillation is the most common arrhythmia syndrome and causes significant morbidity and mortality. Current therapeutics, however, have limited efficacy. Notably, many therapeutics shown to be efficacious in animal models have not proved effective in humans. Thus, there is a need for a drug screening platform based on human tissue. The aim of this study was to develop a robust protocol for generating atrial cardiomyocytes from human-induced pluripotent stem cells. METHODS: A novel protocol for atrial differentiation, with optimized timing of retinoic acid during mesoderm formation, was compared to two previously published methods. Each differentiation method was assessed for successful formation of a contractile syncytium, electrical properties assayed by optical action potential recordings and multi-electrode array electrophysiology, and response to the G-protein-gated potassium channel activator, carbamylcholine. Atrial myocyte monolayers, derived using the new differentiation protocol, were further assessed for cardiomyocyte purity, gene expression, and the ability to form arrhythmic rotors in response to burst pacing. RESULTS: Application of retinoic acid at day 1 of mesoderm formation resulted in a robust differentiation of atrial myocytes with contractile syncytium forming in 16/18 differentiations across two cell lines. Atrial-like myocytes produced have shortened action potentials and field potentials, when compared to standard application of retinoic acid at the cardiac mesoderm stage. Day 1 retinoic acid produced atrial cardiomyocytes are also carbamylcholine sensitive, indicative of active Ikach currents, which was distinct from ventricular myocytes and standard retinoic addition in matched differentiations. A current protocol utilizing reduced Activin A and BMP4 can produce atrial cardiomyocytes with equivalent functionality but with reduced robustness of differentiation; only 8/17 differentiations produced a contractile syncytium. The day 1 retinoic acid protocol was successfully applied to 6 iPSC lines (3 male and 3 female) without additional optimization or modification. Atrial myocytes produced could also generate syncytia with rapid conduction velocities, > 40 cm s-1, and form rotor style arrhythmia in response to burst pacing. CONCLUSIONS: This method combines an enhanced atrial-like phenotype with robustness of differentiation, which will facilitate further research in human atrial arrhythmia and myopathies, while being economically viable for larger anti-arrhythmic drug screens.


Subject(s)
Atrial Fibrillation , Induced Pluripotent Stem Cells , Animals , Female , Male , Humans , Induced Pluripotent Stem Cells/metabolism , Atrial Fibrillation/metabolism , Myocytes, Cardiac/metabolism , Carbachol/metabolism , Carbachol/pharmacology , Cell Differentiation , Action Potentials/physiology , Tretinoin/pharmacology
7.
Elife ; 122023 06 05.
Article in English | MEDLINE | ID: mdl-37272612

ABSTRACT

Unlike single-gene mutations leading to Mendelian conditions, common human diseases are likely to be emergent phenomena arising from multilayer, multiscale, and highly interconnected interactions. Atrial and ventricular septal defects are the most common forms of cardiac congenital anomalies in humans. Atrial septal defects (ASD) show an open communication between the left and right atria postnatally, potentially resulting in serious hemodynamic consequences if untreated. A milder form of atrial septal defect, patent foramen ovale (PFO), exists in about one-quarter of the human population, strongly associated with ischaemic stroke and migraine. The anatomic liabilities and genetic and molecular basis of atrial septal defects remain unclear. Here, we advance our previous analysis of atrial septal variation through quantitative trait locus (QTL) mapping of an advanced intercross line (AIL) established between the inbred QSi5 and 129T2/SvEms mouse strains, that show extremes of septal phenotypes. Analysis resolved 37 unique septal QTL with high overlap between QTL for distinct septal traits and PFO as a binary trait. Whole genome sequencing of parental strains and filtering identified predicted functional variants, including in known human congenital heart disease genes. Transcriptome analysis of developing septa revealed downregulation of networks involving ribosome, nucleosome, mitochondrial, and extracellular matrix biosynthesis in the 129T2/SvEms strain, potentially reflecting an essential role for growth and cellular maturation in septal development. Analysis of variant architecture across different gene features, including enhancers and promoters, provided evidence for the involvement of non-coding as well as protein-coding variants. Our study provides the first high-resolution picture of genetic complexity and network liability underlying common congenital heart disease, with relevance to human ASD and PFO.


Subject(s)
Brain Ischemia , Foramen Ovale, Patent , Heart Defects, Congenital , Stroke , Humans , Mice , Animals , Foramen Ovale, Patent/genetics , Phenotype , Gene Expression Profiling
8.
Cell Rep ; 42(5): 112322, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37105170

ABSTRACT

Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor ß (PDGFRß) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.


Subject(s)
Endothelial Cells , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Pericytes/metabolism , Signal Transduction , Organoids/metabolism
9.
Front Cell Dev Biol ; 11: 1017660, 2023.
Article in English | MEDLINE | ID: mdl-36910157

ABSTRACT

Lysophosphatidic acid is a growth factor-like bioactive phospholipid recognising LPA receptors and mediating signalling pathways that regulate embryonic development, wound healing, carcinogenesis, and fibrosis, via effects on cell migration, proliferation and differentiation. Extracellular LPA is generated from lysophospholipids by the secreted hydrolase-ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2; also, AUTOTAXIN/ATX) and metabolised by different membrane-bound phospholipid phosphatases (PLPPs). Here, we use public bulk and single-cell RNA sequencing datasets to explore the expression of Lpar 1-6, Enpp2, and Plpp genes under skeletal muscle homeostasis and regeneration conditions. We show that the skeletal muscle system dynamically expresses the Enpp2-Lpar-Plpp gene axis, with Lpar1 being the highest expressed member among LPARs. Lpar1 was expressed by mesenchymal fibro-adipogenic progenitors and tenocytes, whereas FAPs mainly expressed Enpp2. Clustering of FAPs identified populations representing distinct cell states with robust Lpar1 and Enpp2 transcriptome signatures in homeostatic cells expressing higher levels of markers Dpp4 and Hsd11b1. However, tissue injury induced transient repression of Lpar genes and Enpp2. The role of LPA in modulating the fate and differentiation of tissue-resident FAPs has not yet been explored. Ex vivo, LPAR1/3 and ENPP2 inhibition significantly decreased the cell-cycle activity of FAPs and impaired fibro-adipogenic differentiation, implicating LPA signalling in the modulation of the proliferative and differentiative fate of FAPs. Together, our results demonstrate the importance of the ENPP2-LPAR-PLPP axis in different muscle cell types and FAP lineage populations in homeostasis and injury, paving the way for further research on the role of this signalling pathway in skeletal muscle homeostasis and regeneration, and that of other organs and tissues, in vivo.

10.
Sci Adv ; 9(13): eadd6911, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37000875

ABSTRACT

Dynamic positioning of endothelial tip and stalk cells, via the interplay between VEGFR2 and NOTCH signaling, is essential for angiogenesis. VEGFR2 activates PI3K, which phosphorylates PI(4,5)P2 to PI(3,4,5)P3, activating AKT; however, PI3K/AKT does not direct tip cell specification. We report that PI(4,5)P2 hydrolysis by the phosphoinositide-5-phosphatase, INPP5K, contributes to angiogenesis. INPP5K ablation disrupted tip cell specification and impaired embryonic angiogenesis associated with enhanced DLL4/NOTCH signaling. INPP5K degraded a pool of PI(4,5)P2 generated by PIP5K1C phosphorylation of PI(4)P in endothelial cells. INPP5K ablation increased PI(4,5)P2, thereby releasing ß-catenin from the plasma membrane, and concurrently increased PI(3,4,5)P3-dependent AKT activation, conditions that licensed DLL4/NOTCH transcription. Suppression of PI(4,5)P2 in INPP5K-siRNA cells by PIP5K1C-siRNA, restored ß-catenin membrane localization and normalized AKT signaling. Pharmacological NOTCH or AKT inhibition in vivo or genetic ß-catenin attenuation rescued angiogenesis defects in INPP5K-null mice. Therefore, PI(4,5)P2 is critical for ß-catenin/DLL4/NOTCH signaling, which governs tip cell specification during angiogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing , beta Catenin , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Neovascularization, Physiologic/genetics , Membrane Proteins/metabolism , RNA, Small Interfering/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism
11.
Nat Rev Cardiol ; 20(5): 289-308, 2023 05.
Article in English | MEDLINE | ID: mdl-36539452

ABSTRACT

Cardiovascular disease is the leading cause of death globally. An advanced understanding of cardiovascular disease mechanisms is required to improve therapeutic strategies and patient risk stratification. State-of-the-art, large-scale, single-cell and single-nucleus transcriptomics facilitate the exploration of the cardiac cellular landscape at an unprecedented level, beyond its descriptive features, and can further our understanding of the mechanisms of disease and guide functional studies. In this Review, we provide an overview of the technical challenges in the experimental design of single-cell and single-nucleus transcriptomics studies, as well as a discussion of the type of inferences that can be made from the data derived from these studies. Furthermore, we describe novel findings derived from transcriptomics studies for each major cardiac cell type in both health and disease, and from development to adulthood. This Review also provides a guide to interpreting the exhaustive list of newly identified cardiac cell types and states, and highlights the consensus and discordances in annotation, indicating an urgent need for standardization. We describe advanced applications such as integration of single-cell data with spatial transcriptomics to map genes and cells on tissue and define cellular microenvironments that regulate homeostasis and disease progression. Finally, we discuss current and future translational and clinical implications of novel transcriptomics approaches, and provide an outlook of how these technologies will change the way we diagnose and treat heart disease.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Humans , Transcriptome , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Gene Expression Profiling , Heart , Heart Diseases/diagnosis , Heart Diseases/genetics , Heart Diseases/therapy
12.
JACC Basic Transl Sci ; 8(12): 1539-1554, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38205347

ABSTRACT

Irreversible fibrosis is a hallmark of myocardial infarction (MI) and heart failure. Extracellular matrix protein-1 (ECM-1) is up-regulated in these hearts, localized to fibrotic, inflammatory, and perivascular areas. ECM-1 originates predominantly from fibroblasts, macrophages, and pericytes/vascular cells in uninjured human and mouse hearts, and from M1 and M2 macrophages and myofibroblasts after MI. ECM-1 stimulates fibroblast-to-myofibroblast transition, up-regulates key fibrotic and inflammatory pathways, and inhibits cardiac fibroblast migration. ECM-1 binds HuCFb cell surface receptor LRP1, and LRP1 inhibition blocks ECM-1 from stimulating fibroblast-to-myofibroblast transition, confirming a novel ECM-1-LRP1 fibrotic signaling axis. ECM-1 may represent a novel mechanism facilitating inflammation-fibrosis crosstalk.

13.
Cell Rep ; 40(11): 111339, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36103836

ABSTRACT

Precursors of the adult hematopoietic system arise from the aorta-gonad-mesonephros (AGM) region shortly after the embryonic circulation is established. Here, we develop a microfluidic culture system to mimic the primitive embryonic circulation and address the hypothesis that circulatory flow and shear stress enhance embryonic blood development. Embryonic (HOXA+) hematopoiesis was derived from human pluripotent stem cells and induced from mesoderm by small-molecule manipulation of TGF-ß and WNT signaling (SB/CHIR). Microfluidic and orbital culture promoted the formation of proliferative CD34+RUNX1C-GFP+SOX17-mCHERRY+ precursor cells that were released into the artificial circulation from SOX17+ arterial-like structures. Single-cell transcriptomic analysis delineated extra-embryonic (yolk sac) and HOXA+ embryonic blood differentiation pathways. SB/CHIR and circulatory flow enhance hematopoiesis by the formation of proliferative HOXA+RUNX1C+CD34+ precursor cells that differentiate into monocyte/macrophage, granulocyte, erythrocyte, and megakaryocyte progenitors.


Subject(s)
Hematopoiesis , Mesonephros , Adult , Antigens, CD34 , Cell Differentiation , Hematopoietic Stem Cells , Humans , Yolk Sac
14.
Am Heart J ; 254: 166-171, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36115390

ABSTRACT

Congenital heart disease (CHD) has a multifactorial aetiology, raising the possibility of an underlying genetic burden, predisposing to disease but also variable expression, including variation in disease severity, and incomplete penetrance. Using whole genome sequencing (WGS), the findings of this study, indicate that complex, critical CHD is distinct from other types of disease due to increased genetic burden in common variation, specifically among established CHD genes. Additionally, these findings highlight associations with regulatory genes and environmental "stressors" in the final presentation of disease.


Subject(s)
Heart Defects, Congenital , Humans , Heart Defects, Congenital/genetics
15.
Heart Lung Circ ; 31(10): 1321-1332, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35961820

ABSTRACT

Despite significant advances in interventional and therapeutic approaches, cardiovascular disease (CVD) remains the leading cause of death and mortality. To lower this health burden, cardiovascular discovery scientists need to play an integral part in the solution. Successful clinical translation is achieved when built upon a strong foundational understanding of the disease mechanisms involved. Changes in the Australian funding landscape, to place greater emphasis on translation, however, have increased job insecurity for discovery science researchers and especially early-mid career researchers. To highlight the importance of discovery science in cardiovascular research, this review compiles six science stories in which fundamental discoveries, often involving Australian researchers, has led to or is advancing to clinical translation. These stories demonstrate the importance of the role of discovery scientists and the need for their work to be prioritised now and in the future. Australia needs to keep discovery scientists supported and fully engaged within the broader cardiovascular research ecosystem so they can help realise the next game-changing therapy or diagnostic approach that diminishes the burden of CVD on society.


Subject(s)
Cardiovascular Diseases , Ecosystem , Australia/epidemiology , Cardiovascular Diseases/therapy , Humans , Research Personnel
16.
STAR Protoc ; 3(1): 101097, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35535162

ABSTRACT

Quantitative assessment of post-ischemic cardiac remodeling is often hampered by tissue complexity and structural heterogeneity of the scar. Automated quantification of microscopy images offers an unbiased approach to reduce inter-observer variability. Here, we present a CellProfiler-based analytical pipeline for the high-throughput analysis of confocal images to quantify post-ischemic cardiac parameters. We describe image preprocessing and the quantification of capillary rarefaction, immune cell infiltration, cell death, and proliferating fibroblasts. This protocol can be adapted to other tissue types. For complete details on the use and execution of this profile, please refer to Janbandhu et al. (2021).


Subject(s)
Heart , Image Processing, Computer-Assisted , Cicatrix , Humans , Image Processing, Computer-Assisted/methods
18.
J Am Heart Assoc ; 11(7): e023021, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35348002

ABSTRACT

Background Platelet-derived growth factor is a major regulator of the vascular remodeling associated with pulmonary arterial hypertension. We previously showed that protein widely 1 (PW1+) vascular progenitor cells participate in early vessel neomuscularization during experimental pulmonary hypertension (PH) and we addressed the role of the platelet-derived growth factor receptor type α (PDGFRα) pathway in progenitor cell-dependent vascular remodeling and in PH development. Methods and Results Remodeled pulmonary arteries from patients with idiopathic pulmonary arterial hypertension showed an increased number of perivascular and vascular PW1+ cells expressing PDGFRα. PW1nLacZ reporter mice were used to follow the fate of pulmonary PW1+ progenitor cells in a model of chronic hypoxia-induced PH development. Under chronic hypoxia, PDGFRα inhibition prevented the increase in PW1+ progenitor cell proliferation and differentiation into vascular smooth muscle cells and reduced pulmonary vessel neomuscularization, but did not prevent an increased right ventricular systolic pressure or the development of right ventricular hypertrophy. Conversely, constitutive PDGFRα activation led to neomuscularization via PW1+ progenitor cell differentiation into new smooth muscle cells and to PH development in male mice without fibrosis. In vitro, PW1+ progenitor cell proliferation, but not differentiation, was dependent on PDGFRα activity. Conclusions These results demonstrate a major role of PDGFRα signaling in progenitor cell-dependent lung vessel neomuscularization and vascular remodeling contributing to PH development, including in idiopathic pulmonary arterial hypertension patients. Our findings suggest that PDGFRα blockers may offer a therapeutic add-on strategy to combine with current pulmonary arterial hypertension treatments to reduce vascular remodeling. Furthermore, our study highlights constitutive PDGFRα activation as a novel experimental PH model.


Subject(s)
Hypertension, Pulmonary , Receptor, Platelet-Derived Growth Factor alpha , Animals , Cell Proliferation , Cells, Cultured , Humans , Hypertension, Pulmonary/metabolism , Hypoxia , Lung , Male , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Vascular Remodeling
19.
STAR Protoc ; 3(1): 101055, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35005637

ABSTRACT

Following myocardial infarction, damaged myocardium is replaced with a fibrotic scar that preserves cardiac structural integrity. Scar area measured from sample 2D images of serial heart sections does not faithfully measure the extent of fibrosis due to structural heterogeneity caused by tissue dynamics. Here, we present an X-ray microcomputed tomography (micro-CT) workflow that generates accurate volumetric quantification of scar and surviving myocardium in infarcted mouse hearts. This workflow could be applied to other fibrotic organs or hearts from other species. For complete details on the use and execution of this protocol, please refer to Janbandhu et al. (2021).


Subject(s)
Cicatrix , Myocardial Infarction , Animals , Cicatrix/pathology , Fibrosis , Mice , Myocardial Infarction/diagnostic imaging , Myocardium/pathology , X-Ray Microtomography/methods
20.
Am Heart J ; 244: 1-13, 2022 02.
Article in English | MEDLINE | ID: mdl-34670123

ABSTRACT

BACKGROUND: The most common cyanotic congenital heart disease (CHD) requiring management as a neonate is transposition of great arteries (TGA). Clinically, up to 50% of TGA patients develop some form of neurodevelopmental disability (NDD), thought to have a significant genetic component. A "ciliopathy" and links with laterality disorders have been proposed. This first report of whole genome sequencing in TGA, sought to identify clinically relevant variants contributing to heart, brain and laterality defects. METHODS: Initial whole genome sequencing analyses on 100 TGA patients focussed on established disease genes related to CHD (n = 107), NDD (n = 659) and heterotaxy (n = 74). Single variant as well as copy number variant analyses were conducted. Variant pathogenicity was assessed using the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. RESULTS: Fifty-five putatively damaging variants were identified in established disease genes associated with CHD, NDD and heterotaxy; however, no clinically relevant variants could be attributed to disease. Notably, case-control analyses identified significantly more predicted-damaging, silent and total variants in TGA cases than healthy controls in established CHD genes (P < .001), NDD genes (P < .001) as well as across the three gene panels (P < .001). CONCLUSION: We present compelling evidence that the majority of TGA is not caused by monogenic rare variants and is most likely oligogenic and/or polygenic in nature, highlighting the complex genetic architecture and multifactorial influences on this CHD sub-type and its long-term sequelae. Assessment of variant burden in key heart, brain and/or laterality genes may be required to unravel the genetic contributions to TGA and related disabilities.


Subject(s)
Heart Defects, Congenital , Transposition of Great Vessels , Arteries , Brain/diagnostic imaging , Heart Defects, Congenital/genetics , Humans , Infant, Newborn , Transposition of Great Vessels/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...