Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 180(5): 928-940.e14, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32109413

ABSTRACT

Covalent modifications to histones are essential for development, establishing distinct and functional chromatin domains from a common genetic sequence. Whereas repressed chromatin is robustly inherited, no mechanism that facilitates inheritance of an activated domain has been described. Here, we report that the Set3C histone deacetylase scaffold Snt1 can act as a prion that drives the emergence and transgenerational inheritance of an activated chromatin state. This prion, which we term [ESI+] for expressed sub-telomeric information, is triggered by transient Snt1 phosphorylation upon cell cycle arrest. Once engaged, the prion reshapes the activity of Snt1 and the Set3C complex, recruiting RNA pol II and interfering with Rap1 binding to activate genes in otherwise repressed sub-telomeric domains. This transcriptional state confers broad resistance to environmental stress, including antifungal drugs. Altogether, our results establish a robust means by which a prion can facilitate inheritance of an activated chromatin state to provide adaptive benefit.


Subject(s)
Chromatin/genetics , Histone Deacetylases/genetics , Nuclear Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Telomere-Binding Proteins/genetics , Transcription Factors/genetics , Cell Cycle Checkpoints/genetics , Histone Code/genetics , Histones/genetics , Phosphorylation/genetics , Prions/genetics , RNA Polymerase II/genetics , Saccharomyces cerevisiae , Shelterin Complex , Telomere/genetics , Transcription, Genetic
2.
Development ; 146(19)2019 09 26.
Article in English | MEDLINE | ID: mdl-31558570

ABSTRACT

Over the past few years, interest in chromatin and its evolution has grown. To further advance these interests, we organized a workshop with the support of The Company of Biologists to debate the current state of knowledge regarding the origin and evolution of chromatin. This workshop led to prospective views on the development of a new field of research that we term 'EvoChromo'. In this short Spotlight article, we define the breadth and expected impact of this new area of scientific inquiry on our understanding of both chromatin and evolution.


Subject(s)
Chromatin/genetics , Evolution, Molecular , Animals , Genome , Humans
3.
Mol Cell ; 69(2): 195-202, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29153393

ABSTRACT

Epigenetics refers to changes in phenotype that are not rooted in DNA sequence. This phenomenon has largely been studied in the context of chromatin modification. Yet many epigenetic traits are instead linked to self-perpetuating changes in the individual or collective activity of proteins. Most such proteins are prions (e.g., [PSI+], [URE3], [SWI+], [MOT3+], [MPH1+], [LSB+], and [GAR+]), which have the capacity to adopt at least one conformation that self-templates over long biological timescales. This allows them to serve as protein-based epigenetic elements that are readily broadcast through mitosis and meiosis. In some circumstances, self-templating can fuel disease, but it also permits access to multiple activity states from the same polypeptide and transmission of that information across generations. Ensuing phenotypic changes allow genetically identical cells to express diverse and frequently adaptive phenotypes. Although long thought to be rare, protein-based epigenetic inheritance has now been uncovered in all domains of life.


Subject(s)
Heredity/physiology , Prions/metabolism , Prions/physiology , Animals , Epigenesis, Genetic/physiology , Epigenomics/methods , Humans , Meiosis , Mitosis , Phenotype , Proteins/metabolism
4.
Genome Announc ; 2(6)2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25477409

ABSTRACT

Bacillus niacini is a member of a small yet diverse group of bacteria able to catabolize nicotinic acid. We report here the availability of a draft genome for B. niacini, which we will use to understand the evolution of its namesake phenotype, which appears to be unique among the species in its phylogenetic neighborhood.

SELECTION OF CITATIONS
SEARCH DETAIL
...