Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1401975, 2024.
Article in English | MEDLINE | ID: mdl-38846489

ABSTRACT

Background: Vitamin D binding protein (DBP) might increase substantially after ovarian stimulation and hence could be associated with IVF/ICSI outcomes because it determines the fraction of free bioavailable 25(OH) vitamin D. In this study, we aim to determine whether DBP is associated with E2 level after ovarian stimulation and IVF/ICSI outcomes. Design: Post-hoc analysis of a prospective observational cohort. Setting: Single-center study. Participants: 2569 women receiving embryo transfer. Intervention: None. Main outcome measures: The main outcomes were oocyte and embryo quality as well as pregnancy outcomes. Results: DBP concentration correlates with E2 on hCG day (=day of inducing ovulation with hCG; correlation coefficient r = 0.118, P<0.001) and E2 x-fold change to baseline level (r = 0.108, P<0.001). DBP is also positively correlated with total 25(OH)D (r = 0.689, R2 = 0.475, P<0.001) and inversely with free 25(OH)D (r=-0.424, R2=0.179, P<0.001), meaning that E2-stimulated DBP synthesis results in a decrease of free 25(OH)D during ovarian stimulation. However, such alteration does not affect IVF/ICSI outcomes when considering confounding factors, such as the number and quality of oocytes nor embryo quality as well as pregnancy outcomes. Conclusion: DBP concentration correlates with the degree of E2 increase after ovarian stimulation. DBP is also positively correlated with total 25(OH)D and inversely with free 25(OH)D, suggesting that the proportion of free 25(OH)D decreases during ovarian stimulation caused by E2-stimulated DBP synthesis. However, such alteration does not affect clinical IVF/ICSI outcomes.


Subject(s)
Chorionic Gonadotropin , Fertilization in Vitro , Ovulation Induction , Ovulation , Pregnancy Outcome , Vitamin D-Binding Protein , Humans , Female , Pregnancy , Vitamin D-Binding Protein/blood , Adult , Ovulation Induction/methods , Chorionic Gonadotropin/administration & dosage , Ovulation/drug effects , Prospective Studies , Fertilization in Vitro/methods , Estrogens/administration & dosage , Embryo Transfer , Pregnancy Rate , Sperm Injections, Intracytoplasmic
2.
Pflugers Arch ; 476(6): 889-899, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38393416

ABSTRACT

Sclerostin (SOST) is produced by osteocytes and is known as a negative regulator of bone homeostasis. Parathyroid hormone (PTH) regulates calcium, phosphate as well as vitamin D metabolism, and is a strong inhibitor of SOST synthesis in vitro and in vivo. PTH has two methionine amino acids (positions 8 and 18) which can be oxidized. PTH oxidized at Met18 (Met18(ox)-PTH) continues to be bioactive, whereas PTH oxidized at Met8 (Met8(ox)-PTH) or PTH oxidized at Met8 and Met18 (Met8, Met18(di-ox)-PTH) has minor bioactivity. How non-oxidized PTH (n-oxPTH) and oxidized forms of PTH act on sclerostin synthesis is unknown. The effects of n-oxPTH and oxidized forms of PTH on SOST gene expression were evaluated in UMR106 osteoblast-like cells. Moreover, we analyzed the relationship of SOST with n-oxPTH and all forms of oxPTH in 516 stable kidney transplant recipients using an assay system that can distinguish in clinical samples between n-oxPTH and the sum of all oxidized PTH forms (Met8(ox)-PTH, Met18(ox)-PTH, and Met8, Met18(di-ox)-PTH). We found that both n-oxPTH and Met18(ox)-PTH at doses of 1, 3, 20, and 30 nmol/L significantly inhibit SOST gene expression in vitro, whereas Met8(ox)-PTH and Met8, Met18(di-ox)-PTH only have a weak inhibitory effect on SOST gene expression. In the clinical cohort, multivariate linear regression showed that only n-oxPTH, but not intact PTH (iPTH) nor oxPTH, is independently associated with circulating SOST after adjusting for known confounding factors. In conclusion, only bioactive PTH forms such as n-oxPTH and Met18(ox)-PTH, inhibit SOST synthesis.


Subject(s)
Adaptor Proteins, Signal Transducing , Bone Morphogenetic Proteins , Parathyroid Hormone , Parathyroid Hormone/metabolism , Humans , Adaptor Proteins, Signal Transducing/metabolism , Bone Morphogenetic Proteins/metabolism , Genetic Markers , Animals , Osteoblasts/metabolism , Osteoblasts/drug effects , Male , Oxidation-Reduction , Female , Rats , Methionine/metabolism , Methionine/pharmacology , Cell Line , Middle Aged
3.
Pflugers Arch ; 476(5): 755-767, 2024 May.
Article in English | MEDLINE | ID: mdl-38305876

ABSTRACT

It has been suggested that the novel selective phosphodiesterase 9 (PDE9) inhibitor may improve cardiac and renal function by blocking 3',5'-cyclic guanosine monophosphate (cGMP) degradation. 5/6 nephrectomized (5/6Nx) rats were used to investigate the effects of the PDE9 inhibitor (BAY 73-6691) on the heart and kidney. Two doses of BAY 73-6691 (1 mg/kg/day and 5 mg/kg/day) were given for 95 days. The 5/6Nx rats developed albuminuria, a decrease in serum creatinine clearance (Ccr), and elevated serum troponin T levels. Echocardiographic data showed that 5/6 nephrectomy resulted in increased fractional shortening (FS), stroke volume (SV), and left ventricular ejection fraction (EF). However, 95 days of PDE9 inhibitor treatment did not improve any cardiac and renal functional parameter. Histopathologically, 5/6 nephrectomy resulted in severe kidney and heart damage, such as renal interstitial fibrosis, glomerulosclerosis, and enlarged cardiomyocytes. Telmisartan attenuated renal interstitial fibrosis and glomerulosclerosis as well as improved cardiomyocyte size. However, except for cardiomyocyte size and renal perivascular fibrosis, BAY 73-6691 had no effect on other cardiac and renal histologic parameters. Pathway enrichment analysis using RNA sequencing data of kidney and heart tissue identified chronic kidney disease pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, complement and coagulation cascades, and nuclear factor kappa B (NF-κB) signaling pathway. PDE9i did not affect any of these disease-related pathways. Two dosages of the PDE9 inhibitor BAY 73-6691 known to be effective in other rat models have only limited cardio-renal protective effects in 5/6 nephrectomized rats.


Subject(s)
Heart , Kidney , Nephrectomy , Animals , Male , Rats , Heart/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Myocardium/metabolism , Myocardium/pathology , Nephrectomy/methods
4.
Front Endocrinol (Lausanne) ; 14: 1178166, 2023.
Article in English | MEDLINE | ID: mdl-37324252

ABSTRACT

Background: 25-hydroxyvitamin D (25(OH)D) and potentially also 1,25-dihydroxyvitamin D (1,25(OH)2D) inhibits the synthesis of parathyroid hormone (PTH) in the chief cells of the parathyroid gland. Clinical studies showing a negative correlation between (25(OH)D and PTH are in good agreement with these findings in basic science studies. However, PTH was measured in these studies with the currently clinically used 2nd or 3rd generation intact PTH (iPTH) assay systems. iPTH assays cannot distinguish between oxidized forms of PTH and non-oxidized PTH. Oxidized forms of PTH are the by far most abundant form of PTH in the circulation of patients with impaired kidney function. Oxidation of PTH causes a loss of function of PTH. Given that the clinical studies done so far were performed with an PTH assay systems that mainly detect oxidized forms of PTH, the real relationship between bioactive non-oxidized PTH and 25(OH)D as well as 1,25(OH)2D is still unknown. Methods: To address this topic, we compared for the first time the relationship between 25(OH)D as well as 1,25(OH)2D and iPTH, oxPTH as well as fully bioactive n-oxPTH in 531 stable kidney transplant recipients in the central clinical laboratories of the Charité. Samples were assessed either directly (iPTH) or after oxPTH (n-oxPTH) was removed using a column that used anti-human oxPTH monoclonal antibodies, a monoclonal rat/mouse parathyroid hormone antibody (MAB) was immobilized onto a column with 500 liters of plasma samples. Spearman correlation analysis and Multivariate linear regression were used to evaluate the correlations between the variables. Results: There was an inverse correlation between 25(OH)D and all forms of PTH, including oxPTH (iPTH: r=-0.197, p<0.0001; oxPTH: r=-0.203, p<0.0001; n-oxPTH: r=-0.146, p=0.001). No significant correlation was observed between 1,25(OH)2D and all forms of PTH. Multiple linear regression analysis considering age, PTH (iPTH, oxPTH and n-oxPTH), serum calcium, serum phosphor, serum creatinine, fibroblast growth factor 23 (FGF23), osteoprotegerin (OPG), albumin, and sclerostin as confounding factors confirmed these findings. Subgroup analysis showed that our results are not affected by sex and age. Conclusion: In our study, all forms of PTH are inversely correlated with 25-hydroxyvitamin D (25(OH)D). This finding would be in line with an inhibition of the synthesis of all forms of PTH (bioactive n-oxPTH and oxidized forms of PTH with minor or no bioactivity) in the chief cells of the parathyroid glad.


Subject(s)
Kidney Transplantation , Parathyroid Hormone , Animals , Mice , Rats , Calcifediol , Parathyroid Glands/metabolism
5.
J Am Coll Cardiol ; 81(12): 1151-1161, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36948731

ABSTRACT

BACKGROUND: The quantitative relationship of incident cardiovascular disease (CVD) to lifetime cumulative risk factor exposure is not well understood. OBJECTIVES: Using CARDIA (Coronary Artery Risk Development in Young Adults) study data, we examined the quantitative associations of cumulative exposure over time to multiple, simultaneously operating risk factors with CVD incidence and the incidence of its components. METHODS: Regression models were developed quantifying the influence of the time course and severity of multiple CVD risk factors, operating simultaneously, on risk of incident CVD. The outcomes were incident CVD and the incidence of its components: coronary heart disease, stroke, and congestive heart failure. RESULTS: Our study included 4,958 asymptomatic adults enrolled in CARDIA from 1985 to 1986 (ages 18 to 30 years) who were followed for 30 years. Risk of incident CVD depends on the time course and severity of a series of independent risk factors, the impact of which is mediated by their effects on individual CVD components after age 40 years. Cumulative exposure (AUC vs time) to low-density lipoprotein cholesterol and triglycerides was independently associated with risk of incident CVD. Of the blood pressure variables, areas under the mean arterial pressure vs time curve and the pulse pressure vs time curve were strongly and independently associated with incident CVD risk. CONCLUSIONS: The quantitative description of the link between risk factors and CVD informs the construction of individualized CVD mitigation strategies, design of primary prevention trials, and assessment of public health impact of risk factor-based interventions.


Subject(s)
Cardiovascular Diseases , Coronary Disease , Heart Failure , Young Adult , Humans , Adolescent , Adult , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Risk Factors , Heart Failure/epidemiology , Blood Pressure/physiology , Incidence
6.
Am J Physiol Cell Physiol ; 324(4): C951-C962, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36779666

ABSTRACT

The mechanisms of nephroprotection in nondiabetic chronic kidney disease (CKD) models by sodium-glucose cotransporter 2 (SGLT2) inhibitors are not well defined. Five groups were established: sham-operated rats, placebo-treated rats with 5/6 nephrectomy (5/6Nx), 5/6Nx + telmisartan (5 mg/kg/day), 5/6Nx + empagliflozin (3 mg/kg/day), and 5/6Nx + empagliflozin (15 mg/kg/day). Treatment duration was 95 days. Empagliflozin showed a dose-dependent beneficial effect on the change from baseline of creatinine clearance (Ccr). The urinary albumin-to-creatinine ratio likewise improved in a dose-dependent manner. Both dosages of empagliflozin improved morphological kidney damage parameters such as renal interstitial fibrosis and glomerulosclerosis. 5/6 nephrectomy led to a substantial reduction of urinary adenosine excretion, a surrogate parameter of the tubuloglomerular feedback (TGF) mechanism. Empagliflozin caused a dose-dependent increase in urinary adenosine excretion. The urinary adenosine excretion was negatively correlated with renal interstitial fibrosis and positively correlated with Ccr. Immunofluorescence analysis revealed that empagliflozin had no effect on CD8+ and CD4+ T cells as well as on CD68+ cells (macrophages). To further explore potential mechanisms, a nonhypothesis-driven approach was used. RNA sequencing followed by quantitative real-time polymerase chain reaction revealed that complement component 1Q subcomponent A chain (C1QA) as well as complement component 1Q subcomponent C chain (C1QC) gene expression were upregulated in the placebo-treated 5/6Nx rats and this upregulation was blunted by treatment with empagliflozin. In conclusion, empagliflozin-mediated nephroprotection in nondiabetic CKD is due to a dose-dependent activation of the TGF as well as empagliflozin-mediated effects on the complement system.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Rats , Animals , Complement C1q , Creatinine , Feedback , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Fibrosis
7.
Front Physiol ; 14: 1306178, 2023.
Article in English | MEDLINE | ID: mdl-38169827

ABSTRACT

Background: Preclinical animal studies and clinical studies indicate that both maternal as well as paternal genetic alterations/gene defects might affect the phenotype of the next-generation without transmissions of the affected gene. Currently, the question of whether the same genetic defect present in the mother or father leads to a similar phenotype in the offspring remains insufficiently elucidated. Methods: In this head-to-head study, we crossbred female and male mice with heterozygous endothelial eNOS knockout (eNOS+/-) with male and female wild-type (wt) mice, respectively. Subsequently, we compared the phenotype of the resulting wt offspring with that of wt offspring born to parents with no eNOS deficiency. Results: Wt female offspring of mothers with heterozygous eNOS showed elevated liver fat accumulation, while wt male offspring of fathers with heterozygous eNOS exhibited increased fasting insulin, heightened insulin levels after a glucose load, and elevated liver glycogen content. By quantitative mass-spectrometry it was shown that concentrations of six serum metabolites (lysoPhosphatidylcholine acyl C20:3, phosphatidylcholine diacyl C36:2, phosphatidylcholine diacyl C38:1, phosphatidylcholine acyl-alkyl C34:1, phosphatidylcholine acyl-alkyl C36:3, and phosphatidylcholine acyl-alkyl C42:5 (PC ae C42:5) as well as four liver carbon metabolites (fructose 6-phosphate, fructose 1,6-bisphosphate, glucose 6-phosphate and fumarate) were different between wt offspring with eNOS+/- mothers and wt offspring with eNOS+/- fathers. Importantly, fumarate was inversely correlated with the liver fat accumulation in female offspring with eNOS+/- mothers and increased liver glycogen in offspring of both sexes with eNOS+/- fathers. The qRT-PCR results revealed that the gene expression patterns were different between wt offspring with eNOS+/- mothers and those offspring with eNOS+/- fathers. Different gene expression patterns were correlated with different observed phenotypic changes in male/female offspring born to mothers or fathers with a heterozygous eNOS genotype. Conclusion: The identical parental genetic alteration (heterozygous eNOS deficiency), without being passed on to the offspring, results in distinct metabolic, liver phenotype, and gene expression pattern variations depending on whether the genetic alteration originated from the father or the mother.

8.
Biomed Pharmacother ; 156: 113947, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36411661

ABSTRACT

BACKGROUND: Sodium glucose cotransporter 2 (SGLT2) inhibitors originally developed for the treatment of type 2 diabetes are clinically very effective drugs halting chronic kidney disease progression. The underlying mechanisms are, however, not fully understood. METHODS: We generated single-cell transcriptomes of kidneys from rats with 5/6 nephrectomy before and after SGLT2 inhibitors treatment by single-cell RNA sequencing. FINDINGS: Empagliflozin treatment decreased BUN, creatinine and urinary albumin excretion compared to placebo by 39.8%, 34.1%, and 55%, respectively (p < 0.01 in all cases). Renal interstitial fibrosis and glomerulosclerosis was likewise decreased by 51% and 66.8%; respectively (p < 0.05 in all cases). 14 distinct kidney cell clusters could be identified by scRNA-seq. The polarization of M2 macrophages from state 1 (CD206-CD68- M2 macrophages) to state 5 (CD206+CD68+ M2 macrophages) was the main pro-fibrotic process, as CD206+CD68+ M2 macrophages highly expressed fibrosis-promoting genes and can convert into fibrocytes. Empagliflozin remarkably inhibited the expression of fibrosis-promoting (IFG1 and TREM2) and polarization-associated genes (GPNMB, LGALS3, PRDX5, and CTSB) in CD206+CD68+ M2 macrophages and attenuated inflammatory signals from CD8+ effector T cells. The inhibitory effect of empagliflozin on CD206+CD68+ M2 macrophages polarization was mainly achieved by affecting mitophagy and mTOR pathways. INTERPRETATION: We propose that the beneficial effects of empagliflozin on kidney function and morphology in 5/6 nephrectomyiced rats with established CKD are at least partially due to an inhibition of CD206+CD68+ M2 macrophage polarization by targeting mTOR and mitophagy pathways and attenuating inflammatory signals from CD8+ effector T cells. FUNDINGS: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Rats , Animals , Macrophage Activation , Diabetes Mellitus, Type 2/pathology , Fibrosis , Kidney/pathology , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Nephrectomy , TOR Serine-Threonine Kinases , Membrane Glycoproteins
9.
Antioxidants (Basel) ; 11(10)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36290698

ABSTRACT

Oxidative stress (OS) presents even in the early chronic kidney disease (CKD) stage and is exacerbated in patients with end-stage renal disease (ESRD) undergoing maintenance hemodialysis (MHD). There is still a debate over the association between oxidative stress and mortality. Our study aims to compare head-to-head the prognostic value of different oxidative markers for all-cause mortality in hemodialysis (HD) patients. We thus enrolled 347 patients on HD in this prospective study. Four OS biomarkers were measured (carbonyl proteins, myeloperoxidase (MPO), advanced oxidation protein products (AOPPs), and oxidized low-density lipoprotein (ox-LDL)). During the 60-month follow-up period, 9 patients have been lost to follow-up and 168 (48.4%) patients died. Concerning the oxidative stress (ox-stress) byproducts, carbonyl proteins were lower in survivors (105.40 ng/mL (IQR 81.30−147.85) versus 129.65 ng/mL (IQR 93.20−180.33); p < 0.001), with similar results for male patients (103.70 ng/mL (IQR 76.90−153.33) versus 134.55 ng/mL (IQR 93.95−178.68); p = 0.0014). However, there are no significant differences in MPO, AOPP, and ox-LDL between the two groups. Kaplan−Meier survival analysis indicated that patients in the higher carbonyl proteins concentration (>117.85 ng/mL group) had a significantly lower survival rate (log-rank test, p < 0.001). Univariate Cox regression analysis showed a positive correlation between carbonyl proteins and all-cause mortality in the higher and lower halves. Even after adjustment for conventional risk factors, it remained a statistically significant predictor of an increased risk of death in MHD. Univariate Cox regression analysis of MPO showed that continuous MPO and Log MPO were significantly associated with all-cause mortality, except for binary MPO (divided according to the median of MPO). Multivariate Cox analysis for MPO showed that the mortality prediction remains significant after adjusting for multiple factors. In conclusion, not all ox-stress biomarkers predict all-cause mortality in HD patients to a similar extent. In the present study, carbonyl proteins and MPO are independent predictors of all-cause mortality in HD patients, whereas AOPPs and oxLDL are clearly not associated with all-cause mortality in HD patients.

10.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293083

ABSTRACT

Preclinical studies have shown that parathyroid hormone (PTH) loses its biological effects through oxidation. PTH can be oxidized at methionines 8 and 18. Three possible variations of oxidized PTH (oxPTH) exist: Met8(ox)PTH, Met18(ox)PTH, and Met8, Met18(di-ox)PTH. A recent study showed that Met18(ox)PTH retained biological activity and was able to upregulate Fgf23 gene expression, whereas Met8(ox)PTH and Met8, Met18(di-ox)PTH showed less or no biological activity. An earlier study likewise showed that the oxidation of Met18 has minor effects on the secondary structure of PTH, whereas the oxidation of Met8 causes substantial structural changes, consistent with another study showing that oxidization just at Met8 blocks the generation of the second messenger cAMP, whereas the effect of the oxidation of Met18 is much less potent in inhibiting cAMP formation. A considerable percentage of circulating PTH in chronic kidney disease (CKD) patients is oxidized. However, we do not know the relative amounts of the different forms of oxPTH with agonistic, partial agonistic, or even antagonistic biological actions in different CKD populations. This might explain different clinical findings in the different CKD populations analyzed so far. The currently available method that was used in these clinical studies just distinguishes between oxPTH and noxPTH without being able to differentiate between different forms of oxPTH. Only methods of PTH measurement that are able to differentiate between PTH forms (noxPTH, Met8(ox)PTH, Met18(ox)PTH, and Met8, Met18(di-ox)PTH) have the potential to improve patient care, because only these methods will definitively separate bioactive from non-bioactive PTH forms. Such methods need to be developed, validated, and used in prospective randomized clinical trials to define the potential value of bioactive PTH forms as a predictor of cardiovascular events, mortality, and bone turnover.


Subject(s)
Parathyroid Hormone , Renal Insufficiency, Chronic , Humans , Parathyroid Hormone/metabolism , Prospective Studies , Oxidation-Reduction , Methionine/metabolism
11.
Kidney Blood Press Res ; 47(9): 565-575, 2022.
Article in English | MEDLINE | ID: mdl-35878596

ABSTRACT

INTRODUCTION: The angiotensin-converting enzyme 2 (ACE2) as well as the transmembrane protease serine type 2 (TMPRSS2) have been found to play roles in cell entry for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection risk and severity of COVID-19 might be indicated by the expression of ACE2 and TMPRSS2 in the lung. METHODS: A high-salt diet rat model and renin-angiotensin-aldosterone system (RAAS) blockade were used to test whether these factors affect ACE2 and TMPRSS2 expression in the lung. A normal (0.3% NaCl), a medium (2% NaCl), or a high (8% NaCl) salt diet was fed to rats for 12 weeks, along with enalapril or telmisartan, before examining the lung for histopathological alteration. Using immunofluorescence and qRT-PCR, the localization as well as mRNA expression of ACE2 and TMPRSS2 were investigated. RESULTS: The findings provide evidence that both TMPRSS2 and ACE2 are highly expressed in bronchial epithelial cells as well as ACE2 was also expressed in alveolar type 2 cells. High-salt diet exposure in rats leads to elevated ACE2 expression on protein level. Treatment with RAAS blockers had no effect on lung tissue expression of ACE2 and TMPRSS2. CONCLUSIONS: These findings offer biological support regarding the safety of these drugs that are often prescribed to COVID-19 patients with cardiovascular comorbidity. High salt intake, on the other hand, might adversely affect COVID-19 outcome. Our preclinical data should stimulate clinical studies addressing this point of concern.


Subject(s)
COVID-19 , Renin-Angiotensin System , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Enalapril/pharmacology , Lung , RNA, Messenger/metabolism , Rats , Renin-Angiotensin System/drug effects , Serine Endopeptidases , Sodium Chloride, Dietary/adverse effects , Telmisartan/pharmacology
12.
Biomed Pharmacother ; 153: 113357, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35792391

ABSTRACT

The CREDENCE trial testing canagliflozin and the EMPA-REG OUTCOME trial testing empagliflozin suggest different effects on acute kidney injury (AKI). AKI diagnosis was mainly made based on changes of serum creatinine (sCr) although this also reflect mode of action of SGLT-2 inhibitors. We analyzed both compounds in a rat AKI model. The renal ischemia-reperfusion injury (I/R) model was used. Four groups were analyzed: sham, I/R+placebo, I/R+canagliflozin (30 mg/kg/day), I/R+ empagliflozin (10 mg/kg/day). Glucose excretion was comparable in both treatment groups indicating comparable SGLT-2 inhibition. Comparing GFR surrogate markers after I/R (sCr and blood urea nitrogen (BUN)), sCr peaked 24 h after I/R, BUN after 48 h, respectively, in the placebo treated I/R group. At all investigated time points after I/R sCr and BUN was higher in the I/R + canagliflozin group as compared to placebo treated rats, whereas the empagliflozin group did not differ from the placebo group. I/R led to tubular dilatation and necrosis. Empagliflozin was able to reduce that finding whereas canagliflozin had no effect. Treatment with empagliflozin also resulted in a significant reduction in an improved inflammatory score (p = 0.006). Renal expression of kidney injury molecule-1 (KIM-1) increased after I/R and empagliflozin but not canagliflozin significantly alleviated KIM-1 expression. I/R reduced urinary miR-26a excretion. Empagliflozin but not canagliflozin was able to restore normal levels of urinary miR-26a. This study in an AKI model confirmed safety data in the EMPA-REG OUTCOME trial suggesting that empagliflozin might reduce AKI risk. The empagliflozin effects on KIM-1 and miR-26a might indicate beneficial regulation of inflammation. These data should stimulate clinical studies with AKI risk as primary endpoint.


Subject(s)
Acute Kidney Injury , Cardiovascular Diseases , MicroRNAs , Sodium-Glucose Transporter 2 Inhibitors , Animals , Rats , Acute Kidney Injury/drug therapy , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Cardiovascular Diseases/drug therapy , Ischemia/drug therapy , MicroRNAs/therapeutic use , Reperfusion , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
13.
Diabetologia ; 65(7): 1222-1236, 2022 07.
Article in English | MEDLINE | ID: mdl-35488925

ABSTRACT

AIMS/HYPOTHESIS: It was shown that maternal endothelial nitric oxide synthase (eNOS) deficiency causes fatty liver disease and numerically lower fasting glucose in female wild-type offspring, suggesting that parental genetic variants may influence the offspring's phenotype via epigenetic modifications in the offspring despite the absence of a primary genetic defect. The aim of the current study was to analyse whether paternal eNOS deficiency may cause the same phenotype as seen with maternal eNOS deficiency. METHODS: Heterozygous (+/-) male eNOS (Nos3) knockout mice or wild-type male mice were bred with female wild-type mice. The phenotype of wild-type offspring of heterozygous male eNOS knockout mice was compared with offspring from wild-type parents. RESULTS: Global sperm DNA methylation decreased and sperm microRNA pattern altered substantially. Fasting glucose and liver glycogen storage were increased when analysing wild-type male and female offspring of +/- eNOS fathers. Wild-type male but not female offspring of +/- eNOS fathers had increased fasting insulin and increased insulin after glucose load. Analysing candidate genes for liver fat and carbohydrate metabolism revealed that the expression of genes encoding glucocorticoid receptor (Gr; also known as Nr3c1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1a; also known as Ppargc1a) was increased while DNA methylation of Gr exon 1A and Pgc1a promoter was decreased in the liver of male wild-type offspring of +/- eNOS fathers. The endocrine pancreas in wild-type offspring was not affected. CONCLUSIONS/INTERPRETATION: Our study suggests that paternal genetic defects such as eNOS deficiency may alter the epigenome of the sperm without transmission of the paternal genetic defect itself. In later life wild-type male offspring of +/- eNOS fathers developed increased fasting insulin and increased insulin after glucose load. These effects are associated with increased Gr and Pgc1a gene expression due to altered methylation of these genes.


Subject(s)
Glucose , Liver Glycogen , Nitric Oxide Synthase Type III , Animals , Female , Glucose/metabolism , Homeostasis , Insulin/metabolism , Liver Glycogen/metabolism , Male , Mice , Mice, Knockout , Nitric Oxide Synthase Type III/deficiency , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism
14.
BMC Nephrol ; 23(1): 117, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35331159

ABSTRACT

BACKGROUND: Host factors such as angiotensin-converting enzyme 2 (ACE2) and the transmembrane protease, serine-subtype-2 (TMPRSS2) are important factors for SARS-CoV-2 infection. Clinical and pre-clinical studies demonstrated that RAAS-blocking agents can be safely used during a SARS-CoV-2 infection but it is unknown if DPP-4 inhibitors or SGLT2-blockers may promote COVID-19 by increasing the host viral entry enzymes ACE2 and TMPRSS2. METHODS: We investigated telmisartan, linagliptin and empagliflozin induced effects on renal and cardiac expression of ACE2, TMPRSS2 and key enzymes involved in RAAS (REN, AGTR2, AGT) under high-salt conditions in a non-diabetic experimental 5/6 nephrectomy (5/6 Nx) model. In the present study, the gene expression of Ace2, Tmprss2, Ren, Agtr2 and Agt was assessed with qRT-PCR and the protein expression of ACE2 and TMPRSS2 with immunohistochemistry in the following experimental groups: Sham + normal diet (ND) + placebo (PBO); 5/6Nx + ND + PBO; 5/6Nx + high salt-diet (HSD) + PBO; 5/6Nx + HSD + telmisartan; 5/6Nx + HSD + linagliptin; 5/6Nx + HSD + empagliflozin. RESULTS: In the kidney, the expression of Ace2 was not altered on mRNA level under disease and treatment conditions. The renal TMPRSS2 levels (mRNA and protein) were not affected, whereas the cardiac level was significantly increased in 5/6Nx rats. Intriguingly, the elevated TMPRSS2 protein expression in the heart was significantly normalized after treatment with telmisartan, linagliptin and empagliflozin. CONCLUSIONS: Our study indicated that there is no upregulation regarding host factors potentially promoting SARS-CoV-2 virus entry into host cells when the SGLT2-blocker empagliflozin, telmisartan and the DPP4-inhibitor blocker linagliptin are used. The results obtained in a preclinical, experimental non-diabetic kidney failure model need confirmation in ongoing interventional clinical trials.


Subject(s)
COVID-19 Drug Treatment , Dipeptidyl-Peptidase IV Inhibitors , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Animals , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Humans , Kidney/metabolism , Nephrectomy , Rats , SARS-CoV-2 , Sodium-Glucose Transporter 2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
15.
FASEB J ; 36(4): e22259, 2022 04.
Article in English | MEDLINE | ID: mdl-35294083

ABSTRACT

Effects of feeding male rats during spermatogenesis a high-fat, high-sucrose and high-salt diet (HFSSD) over two generations (F0 and F1) on renal outcomes are unknown. Male F0 and F1 rats were fed either control diet (F0CD+F1CD) or HFSSD (F0HD+F1HD). The outcomes were glomerular filtration rate and urinary albumin excretion in F1 and F2 offspring. If both outcomes were altered a morphological and molecular assessment was done. F2 offspring of both sexes had a decreased GFR. However, increased urinary albumin excretion was only observed in female F2 F0HD+F1HD offspring compared with controls. F0HD+F1HD female F2 offspring developed glomerulosclerosis (+31%; p < .01) and increased renal interstitial fibrosis (+52%; p < .05). RNA sequencing followed by qRT-PCR validation showed that four genes (Enpp6, Tmem144, Cd300lf, and Actr3b) were differentially regulated in the kidneys of female F2 offspring. lncRNA XR-146683.1 expression decreased in female F0HD+F1HD F2 offspring and its expression was (r = 0.44, p = .027) correlated with the expression of Tmem144. Methylation of CpG islands in the promoter region of the Cd300lf gene was increased (p = .001) in female F2 F0HD+F1HD offspring compared to controls. Promoter CpG island methylation rate of Cd300lf was inversely correlated with Cd300lf mRNA expression in F2 female offspring (r = -0.483, p = .012). Cd300lf mRNA expression was inversely correlated with the urinary albumin-to-creatinine ratio in female F2 offspring (r = -0.588, p = .005). Paternal pre-conceptional unhealthy diet given for two generations predispose female F2 offspring to chronic kidney disease due to epigenetic alterations of renal gene expression. Particularly, Cd300lf gene promotor methylation was inversely associated with Cd300lf mRNA expression and Cd300lf mRNA expression itself was inversely associated with urinary albumin excretion in F2 female offspring whose fathers and grandfathers got a pre-conceptional unhealthy diet.


Subject(s)
Prenatal Exposure Delayed Effects , Renal Insufficiency, Chronic , Albumins , Animals , Diet , Diet, High-Fat/adverse effects , Female , Humans , Male , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , RNA, Messenger , Rats , Sodium Chloride , Sodium Chloride, Dietary , Spermatogenesis , Sucrose/adverse effects
16.
Biomed Pharmacother ; 146: 112606, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34968924

ABSTRACT

To date, the lowest protective SGLT2 inhibitor dose is unknown. We initially performed a dose-response pilot study in normal rats. Based on the results of this pilot study we compared the cardio-renal effects of the SGLT-2 inhibitor empagliflozin, with placebo or telmisartan in rats with 5/6 nephrectomy (5/6 Nx) on a high salt diet (HSD). The experimental set up was as follows: Sham operation (Sham) with normal diet and placebo; 5/6 Nx with 2% HSD and placebo; 5/6 Nx with HSD and empagliflozin (0.6 mg/kg/day, bid); 5/6 Nx with HSD and telmisartan (5 mg/kg/day, qd). Empagliflozin treatment increased urinary glucose excretion, in parallel to empagliflozin plasma levels, in a dose-dependent manner starting at doses of 1 mg/kg in the pilot study. 5/6Nx rats on HSD treated with this low empagliflozin dose showed significantly reduced cardiac (-34.85%; P < 0.05) and renal (-33.68%; P < 0.05) fibrosis in comparison to 5/6Nx rats on HSD treated with placebo. These effects were comparable to the effects observed when implementing the standard dose (5 mg/kg/day) of telmisartan (cardiac fibrosis: -36.37%; P < 0.01; renal fibrosis; -43.96%; P < 0.01). RNA-sequencing followed by confirmatory qRT-PCR revealed that both telmisartan and empagliflozin exert their cardiac effects on genes involved in vascular cell stability and cardiac iron homeostasis, whereas in the kidneys expression of genes involved in endothelial function and oxidative stress were differentially expressed. Urinary adenosine excretion, a surrogate marker of the tubuloglomerular feedback (TGF) mechanism, was not affected. In conclusion, the antifibrotic properties of low dose empagliflozin were comparable to a standard dose of telmisartan. The underlying pathways appear to be TGF independent.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Benzhydryl Compounds/pharmacology , Fibrosis/pathology , Glucosides/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Telmisartan/pharmacology , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Animals , Benzhydryl Compounds/administration & dosage , Dose-Response Relationship, Drug , Glucosides/administration & dosage , Glycosuria , Heart Diseases/pathology , Iron/metabolism , Kidney Diseases/pathology , Male , Nephrectomy , Rats , Rats, Wistar , Sequence Analysis, RNA , Sodium, Dietary , Sodium-Glucose Transporter 2 Inhibitors/administration & dosage , Telmisartan/administration & dosage
17.
Nephrol Dial Transplant ; 37(7): 1348-1356, 2022 06 23.
Article in English | MEDLINE | ID: mdl-34792167

ABSTRACT

BACKGROUND: Angiopoietin-2 (Ang-2) plays a pivotal role in pathological vascular remodeling and angiogenesis. Both vascular mechanisms are active in patients with end-stage renal disease (ESRD) and may contribute to the high mortality in these patients. The aim of this multicenter prospective cohort study was to investigate baseline serum Ang-2 concentrations in ESRD patients on hemodialysis (HD) for their ability to predict all-cause mortality. METHODS: We conducted a prospective cohort study in 340 stable HD patients from different chronic dialysis centers in Berlin, Germany. The primary endpoint was all-cause mortality during a 5-year follow-up period. Blood samples and clinical data were collected at baseline. Serum Ang-2 was measured with a validated enzyme-linked immunosorbent assay (Biomedica, Vienna, Austria). RESULTS: A total of 313 HD patients (206 men and 107 women) were finally included in the study. Receiver operating characteristic (ROC) analysis of Ang-2 concentrations yielded an area under the curve (AUC) of 0.65 (P < 0.0001) for predicting all-cause mortality in the entire study population and was used to determine the optimal cut-off (111.0 pmol/L) for all-cause mortality. Kaplan-Meier survival analysis indicated that male but not female end-stage kidney disease patients on HD with higher Ang-2 concentrations had a significantly lower survival (log-rank test, P < 0.0001 and P = 0.380 for male and female patients, respectively). Multivariable Cox regression analyses adjusted for age, comorbidity, smoking, dialysis vintage, serum creatinine, hemoglobin, C-reactive protein, serum albumin, intact parathyroid hormone (iPTH), low-density lipoprotein (LDL) and Kt/V likewise indicated that elevated Ang-2 concentrations are associated with all-cause mortality in male {hazard ratio [HR] 3.294 [95% confidence interval (CI) 1.768-6.138]; P = 0.0002} but not in female end-stage kidney disease patients on HD [HR 1.084 (95% CI 0.476-2.467); P = 0.847]. CONCLUSION: Ang-2 at baseline is independently associated with all-cause mortality in male ESRD patients on HD.


Subject(s)
Kidney Failure, Chronic , Renal Dialysis , Angiopoietin-2 , Female , Humans , Male , Proportional Hazards Models , Prospective Studies , Renal Dialysis/adverse effects
18.
Clin Nephrol ; 96(3): 129-137, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34042584

ABSTRACT

BACKGROUND: Vascular calcification is common in chronic kidney disease and is associated with significant cardiovascular morbidity and mortality. One of the important factors regulating vascular calcification is osteoprotegerin (OPG). There are, however, limited data on the impact of OPG on all-cause mortality and graft loss in kidney transplant recipients so far. Given its impact on vascular calcification, the aim of our study is to analyze whether OPG was a risk factor of all-cause mortality and graft loss in 600 stable kidney transplant recipients. MATERIALS AND METHODS: 600 stable renal transplant recipients (367 women, 233 men) were followed for all-cause mortality and graft loss for 3 years. Blood and urine samples for analysis and clinical data were collected at study entry. We performed Kaplan-Meier survival analysis and Cox regression models considering confounding factors such as age, estimated glomerular filtration rate (eGFR), cold ischemia time, HbA1c, phosphorus, calcium, and albumin. RESULTS: 65 patients died, and 38 patients had graft loss during the observation period. The OPG baseline concentrations had no effect on graft loss, whereas Kaplan-Meier survival curve showed that baseline plasma OPG concentrations were associated with all-cause mortality in stable kidney transplant recipients (p < 0.0001, log-rank test). After multiple Cox regression analysis adjusting for age, eGFR, cold ischemia time, HbA1c, phosphorus, calcium, and albumin, plasma levels of OPG remained an independent predictor of all-cause mortality (HR, 1.181; 95%CI 1.035 - 1.347; p = 0.014). CONCLUSION: Baseline plasma OPG is an independent risk factor for all-cause mortality but not graft loss in patients after kidney transplantation.


Subject(s)
Kidney Transplantation , Osteoprotegerin , Biomarkers , Female , Humans , Kidney Transplantation/adverse effects , Male , Risk Factors , Transplant Recipients
19.
BMC Nephrol ; 22(1): 125, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33832449

ABSTRACT

BACKGROUND: Increased fibroblast growth factor 23 (FGF23) is a risk factor for mortality, cardiovascular disease, and progression of chronic kidney disease. Limited data exist comparing the association of either c-terminal FGF23 (cFGF23) or intact FGF23 (iFGF23) in kidney transplant recipients (KTRs) with overall (all-cause) graft loss. METHODS: We conducted a prospective observational cohort study in 562 stable kidney transplant recipients. Patients were followed for graft loss and all-cause mortality for a median follow-up of 48 months. RESULTS: During a median follow-up of 48 months, 94 patients had overall graft loss (primary graft loss or death with functioning graft). Both cFGF23 and iFGF23 concentrations were significantly higher in patients with overall graft loss than those without (24.59 [11.43-87.82] versus 10.67 [5.99-22.73] pg/ml; p < 0.0001 and 45.24 [18.63-159.00] versus 29.04 [15.23-60.65] pg/ml; p = 0.002 for cFGF23 and iFGF23, respectively). Time-dependent ROC analysis showed that cFGF23 concentrations had a better discriminatory ability than iFGF23 concentrations in predicting overall (all-cause) graft loss. Cox regression analyses adjusted for risk factors showed that cFGF23 (HR for one unit increase of log transformed cFGF23: 1.35; 95% CI, 1.01-1.79; p = 0.043) but not iFGF23 (HR for one unit increase of log transformed iFGF23: 0.97; 95% CI, 0.75-1.25; p = 0.794) was associated with the overall graft loss. CONCLUSION: Elevated cFGF23 concentrations at baseline are independently associated with an increased risk of overall graft loss. iFGF23 measurements were not independently associated with overall graft loss. The cFGF23 ELISA might detect bioactive FGF23 fragments that are not detected by the iFGF23 ELISA.


Subject(s)
Fibroblast Growth Factor-23/blood , Graft Survival/physiology , Kidney Transplantation , Transplant Recipients , Adult , Aged , Biomarkers/blood , Cause of Death , Enzyme-Linked Immunosorbent Assay , Female , Humans , Kidney Diseases/surgery , Kidney Transplantation/mortality , Male , Middle Aged , Proportional Hazards Models , Prospective Studies , ROC Curve , Risk Factors
20.
Br J Clin Pharmacol ; 87(6): 2475-2492, 2021 06.
Article in English | MEDLINE | ID: mdl-33217033

ABSTRACT

AIMS: Angiotensin-converting enzyme-2 (ACE2) is the receptor for SARS-CoV-2. Animal studies suggest that renin-angiotensin-aldosterone system (RAAS) blockers might increase the expression of ACE2 and potentially increase the risk of SARS-CoV-2 infection. METHODS AND RESULTS: The effect of ACE inhibitor (ACEI) treatment on the pneumonia incidence in non-COVID-19 patients (25 studies, 330 780 patients) was associated with a 26% reduction of pneumonia risk (odds ratio [OR]: 0.74, P < .001). Pneumonia-related death cases in ACEI-treated non-COVID-19 patients were reduced by 27% (OR: 0.73, P = .004). However, angiotensin II receptor blockers (ARB) treatment (10 studies, 275 621 non-COVID-19 patients) did not alter pneumonia risk in patients. Pneumonia-related death cases in ARB-treated non-COVID-19 patients was analysed only in 1 study and was significantly reduced (OR, 0.47; 95% confidence interval, 0.30 to 0.72). Results from 11 studies (8.4 million patients) showed that the risk of getting infected with the SARS-CoV-2 virus was reduced by 13% (OR: 0.87, P = .014) in patients treated with ACEI, whereas analysis from 10 studies (8.4 million patients) treated with ARBs showed no effect (OR, 0.92, P = .354). Results from 34 studies in 67 644 COVID-19 patients showed that RAAS blockade reduces all-cause mortality by 24% (OR = 0.76, P = .04). CONCLUSION: ACEIs reduce the risk of getting infected with the SARS-CoV-2 virus. Blocking the RAAS may decrease all-cause mortality in COVID-19 patients. ACEIs also reduce the risk of non-COVID pneumonia. All-cause mortality due to non-COVID pneumonia is reduced by ACEI and potentially by ARBs.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , COVID-19/physiopathology , Renin-Angiotensin System/physiology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , COVID-19/epidemiology , COVID-19/pathology , Humans , Hypertension/complications , Lung , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL