Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 10: 1233292, 2023.
Article in English | MEDLINE | ID: mdl-38026666

ABSTRACT

The objective of this study was to investigate the effects of dietary lysine restriction on the global gene expression profile of skeletal muscle in growing pigs. Twelve crossbred (Yorkshire × Landrace) barrows (initial BW 22.6 ± 2.04 kg) were randomly assigned to two dietary treatments (LDD: a lysine-deficient diet; LAD: a lysine-adequate diet) according to a completely randomized experiment design (n = 6). After feeding for 8 weeks, skeletal muscle was sampled from the longissimus dorsi of individual pigs. The muscle total RNA was isolated and cDNA libraries were prepared for RNA sequencing (RNA-Seq) analysis. The RNA-Seq data obtained was then analyzed using the CLC Genomics Workbench to identify differentially expressed genes (DEGs). A total of 80 genes (padj ≤ 0.05) were differentially expressed in the longissimus dorsi muscle of the pigs fed LDD vs. LAD, of which 46 genes were downregulated and 34 genes were upregulated. Gene Ontology (GO) analysis of the DEGs (padj ≤ 0.05) for functional annotation identified those GO terms that are mostly associated with the molecular functions of structural molecules and metabolic enzymes (e.g., oxidoreductase and endopeptidase), biological process of acute-phase response, and amino acid metabolism including synthesis and degradation in the extracellular matrix region. Collectively, the results of this study have provided some novel insight regarding the molecular mechanisms of muscle growth that are associated with dietary lysine supply.

2.
Front Biosci (Landmark Ed) ; 26(9): 413-422, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34590456

ABSTRACT

Background: Methionine (Met) is usually the second or third limiting amino acid in swine diets and plays vital roles in promoting the growth, especially, the muscle growth of pigs. This research evaluated the effects of dietary Met restriction on the growth performance, plasma metabolite concentrations, and myogenic gene expression in growing pigs. Materials and methods: Eight genes in two families (myogenic regulatory factor family and myocyte enhancer factor 2 family) were selected for the analysis. Twenty individually penned barrows (crossbred, 23.6 ± 2.4 kg) were randomly allotted to two dietary treatments (n = 10). A diet based on corn and soybean meal (Diet 1, Met-restricted) was formulated to meet or exceed the energy and nutrient requirements, except for Met. Diet 2 (Met-adequate) was formulated by adding crystalline DL-Met to Diet 1 to meet the Met requirement. During the 4-week feeding trial, average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) were measured. Immediately before and after the feeding trial, blood was sampled via jugular venipuncture for plasma nutrient metabolite analysis, while Longissimus dorsi muscle were sampled via aseptic biopsy for gene expression analysis. Data were analyzed with Student t-test. Results: Pigs fed the Met-restricted diet had lower ADG and G:F (P < 0.01). Plasma Met, cysteine, and taurine concentrations were lower (P < 0.05), while glycine and histidine concentrations were higher (P < 0.05), in pigs fed the Met-restricted diet. Furthermore, the pigs fed the Met-restricted diet tended to express less myogenic factor 6 (Myf6) and myocyte enhancer factor 2D (Mef2D) mRNA in longissimus dorsi muscle (P < 0.09). Conclusion: Given the fact that Myf6, assisted by Mef2D, is involved in myocyte differentiation, this study suggests that the reduced growth performance in the Met-restricted pigs may be associated with a reduced muscle cell differentiation.


Subject(s)
Animal Feed , Methionine , Animal Feed/analysis , Animals , Diet , Gene Expression , Glycine max , Swine
3.
Transl Anim Sci ; 3(1): 329-339, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32704803

ABSTRACT

Methionine (Met), the second or third limiting amino acid (AA) in typical swine diets, plays important roles in promoting swine health and growth, especially, muscle growth. Whereas dl-Met products have been used in swine industry for many years, l-Met products have been developed recently. This research was conducted to study the effects of supplemental l-Met or dl-Met on nutrient metabolism, muscle gene expression, and growth performance of pigs. Twenty crossbred young barrows (initial body weight [BW] 21.2 ± 2.7 kg) were randomly assigned to 20 individual pens and two dietary treatments according to a completely randomized design with pigs serving as the experiment unit (n = 10). Two corn and soybean meal-based diets (diets 1 and 2) were formulated to meet or exceed the recommended requirements for energy, AA, and other nutrients (NRC. 2012. Nutrient requirements of swine, 11th ed. Washington, DC: The National Academies Press; AMINODat 5.0). Crystalline l-Met and dl-Met were supplemented to diets 1 and 2 (both at 0.13%, as-fed basis), respectively. After 4 wk of an ad libitum feeding trial, BW and feed intake were measured to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F). Blood samples were collected from the jugular vein for analyses of plasma AA and metabolite concentrations. The longissimus dorsi muscle samples were collected for analysis of myogenesis gene expression. Data were analyzed using Student's t-test. There were no differences (P = 0.56 to 0.94) in ADG, ADFI, or G:F between pigs fed the two experimental diets and no differences between diets were observed in plasma free AA concentrations. No differences were observed between pigs fed the two diets in expression of mRNA for eight myogenesis-related genes, which were myogenic differentiation 1, myogenin, myogenic factors 5, muscle regulatory factor 4 (a.k.a. myogenic factors 6), and myocyte enhancer factors 2A, 2B, 2C, and 2D. In conclusion, results of this experiment indicate that the bioefficacy of l-Met is not different from that of dl-Met, which is likely because of an efficient conversion of d-Met to l-Met by pigs.

SELECTION OF CITATIONS
SEARCH DETAIL
...