Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Curr Probl Cardiol ; 49(9): 102686, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830479

ABSTRACT

Cardiovascular diseases (CVDs) represent a significant global health challenge, underscoring the need for innovative approaches to prevention and treatment. Recent years have seen a surge in interest in unraveling the complex relationship between the gut microbiome and cardiovascular health. This article delves into current research on the composition, diversity, and impact of the gut microbiome on CVD development. Recent advancements have elucidated the profound influence of the gut microbiome on disease progression, particularly through key mediators like Trimethylamine-N-oxide (TMAO) and other microbial metabolites. Understanding these mechanisms reveals promising therapeutic targets, including interventions aimed at modulating the gut microbiome's interaction with the immune system and its contribution to endothelial dysfunction. Harnessing this understanding, personalized medicine strategies tailored to individuals' gut microbiome profiles offer innovative avenues for reducing cardiovascular risk. As research in this field continues to evolve, there is vast potential for transformative advancements in cardiovascular medicine, paving the way for precision prevention and treatment strategies to address this global health challenge.

2.
Curr Probl Cardiol ; 49(6): 102568, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599562

ABSTRACT

Cardiovascular disease (CVD), exemplified by coronary artery disease (CAD), is a global health concern, escalating in prevalence and burden. The etiology of CAD is intricate, involving different risk factors. CVD remains a significant cause of mortality, driving the need for innovative interventions like percutaneous coronary intervention and vascular stents. These stents aim to minimize restenosis, thrombosis, and neointimal hyperplasia while providing mechanical support. Notably, the challenges of achieving ideal stent characteristics persist. An emerging avenue to address this involves enhancing the mechanical performance of polymeric bioresorbable stents using additive manufacturing techniques And Three-dimensional (3D) printing, encompassing various manufacturing technologies, has transcended its initial concept to become a tangible reality in the medical field. The technology's evolution presents a significant opportunity for pharmaceutical and medical industries, enabling the creation of targeted drugs and swift production of medical implants. It revolutionizes medical procedures, transforming the strategies of doctors and surgeons. Patient-specific 3D-printed anatomical models are now pivotal in precision medicine and personalized treatment approaches. Despite its ongoing development, additive manufacturing in healthcare is already integrated into various medical applications, offering substantial benefits to a sector under pressure for performance and cost reduction. In this review primarily emphasizes stent technology, different types of stents, highlighting its application with some potential complications. Here we also address their benefits, potential issues, effectiveness, indications, and contraindications. In future it can potentially reduce complications and help in improving patients' outcomes. 3DP technology offers the promise to customize solutions for complex CVD conditions and help or fostering a new era of precision medicine in cardiology.


Subject(s)
Cardiovascular Diseases , Printing, Three-Dimensional , Prosthesis Design , Stents , Humans , Coronary Artery Disease/therapy , Coronary Artery Disease/surgery , Percutaneous Coronary Intervention/methods , Absorbable Implants
3.
Pharmaceutics ; 16(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38543238

ABSTRACT

Self-healing hydrogels often lack mechanical properties, limiting their wound-dressing applications. This study introduced S-Nitrosoglutathione (GSNO) to self-healing hydrogel-based wound dressings. Self-healing hydrogel mechanical properties were improved via polymer blends. Applying this hydrogel to the wound site allows it to self-heal and reattach after mechanical damage. This work evaluated polyvinyl alcohol (PVA)-based self-healing hydrogels with borax as a crosslinking agent and carboxymethyl chitosan as a mechanical property enhancer. Three formulations (F1, F4, and F7) developed self-healing hydrogels. These formulations had borax concentrations of 0.8%, 1.2%, and 1.6%. An FTIR study shows that borate ester crosslinking and hydrogen bonding between polymers generate a self-healing hydrogel. F4 has a highly uniform and regular pore structure, as shown by the scanning electron microscope image. F1 exhibited faster self-healing, taking 13.95 ± 1.45 min compared to other formulations. All preparations had pH values close to neutrality, making them suitable wound dressings. Formula F7 has a high drug content (97.34 ± 1.21%). Good mechanical qualities included high tensile stress-strain intensity and Young's modulus. After 28 h of storage at -20 °C, 5 °C, and 25 °C, the self-healing hydrogel's drug content dropped significantly. The Korsmeyer-Peppas release model showed that the release profile of GSNO followed Fickian diffusion. Thus, varying the concentration of crosslinking agent and adding a polymer affects self-healing hydrogels' physicochemical properties.

4.
J Genet Eng Biotechnol ; 22(1): 100342, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494245

ABSTRACT

BACKGROUND: Human papillomavirus (HPV) vaccination is one of the crucial national vaccination programs aimed at reducing the prevalence of the diseases associated with HPV infections, which continue to pose a global health concern. However, a significant disparity exists in the distribution of HPV vaccine, particularly in low-middle income countries where the cost of HPV vaccine becomes a major obstacle. Thus, it is essential to ensure the availability of an economically feasible HPV vaccine, necessitating immediate efforts to enhance the cost-effectiveness of vaccine production. This study aimed to develop an efficient production system for the recombinant HPV type 52 L1 protein as HPV vaccine material using methylotrophic yeast Hansenula polymorpha expression system. RESULTS: This study presents an in-depth examination of the expression and scale-up production of HPV type 52 L1 protein using DASGIP® parallel bioreactor system. The pHIPX4 plasmid, which is regulated by the MOX promoter, generates stable clones that express the target protein. Cultivation employing the synthetic medium SYN6(10) with controlled parameters (e.g. temperature, pH, feeding strategy, and aeration) produces 0.15 µg/mL of HPV type 52 L1 protein, suggesting a possibility for scaling up to a higher production level. CONCLUSION: The scale-up production of HPV type 52 L1 protein using Hansenula polymorpha expression system described in this study provides an opportunity for an economical manufacturing platform for the development of the HPV vaccine.

5.
J Genet Eng Biotechnol ; 21(1): 126, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37981617

ABSTRACT

BACKGROUND: Cervical cancer caused by the human papillomavirus (HPV) is one of the most frequent malignances globally. HPV 52 is a high-risk cancer-causing genotype that has been identified as the most prevalent type in Indonesia. Virus-like particles (VLP)-based vaccinations against HPV infection could benefit from self-assembled VLP of L1 capsid protein. RESULT: The recombinant HPV 52 L1 was expressed in Pichia pastoris on a shake-flask scale with 0.5% methanol induction in this study. The copy number was used to compare the expression level and stability. The colony that survived on a solid medium containing 2000 µg/ml of Zeocin was selected and cultured to express HPV 52 L1. DNA was extracted from the chosen colony, and the copy was determined using qPCR. HPV 52 L1 protein was then purified through fast performance liquid chromatography. Transmission electron microscopy (TEM) evaluation confirmed the VLP self-assembly. The genomic DNA remained intact after 100 generations of serial cultivation under no selective pressure medium conditions, and the protein produced was relatively stable. However, the band intensity was slightly lower than in the parental colony. In terms of copy number, a low copy transformant resulted in low expression but produced a highly stable recombinant clone. Eventually, the L1 protein expressed in Pichia pastoris can self-assemble into VLP. Therefore, recombinant HPV possesses a stable clone and the ability to self-assemble into VLP. CONCLUSION: The recombinant L1 HPV 52 protein is successfully expressed in P. pastoris within a size range of approximately 55 kDa and demonstrated favorable stability. The L1 protein expressed in Pichia pastoris successful self-assembled of HPV VLPs, thereby establishing their potential efficacy as a prophylactic vaccine.

6.
Molecules ; 28(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37630309

ABSTRACT

α-Mangostin (a xanthone derivative found in the pericarp of Garcinia mangostana L.) and propolis extract (which is rich in flavonoids and phenols) are known for their antioxidant properties, making them potential supplements for the treatment of oxidative stress-related conditions. However, these two potential substances have the same primary drawback, which is low solubility in water. The low water solubility of α-mangostin and propolis can be overcome by utilizing nanotechnology approaches. In this study, a propolis-based nanostructured lipid carrier (NLC) system was formulated to enhance the delivery of α-mangostin. The aim of this study was to characterize the formulation and investigate its influence on the antioxidant activity of α-mangostin. The results showed that both unloaded propolis-based NLC (NLC-P) and α-mangostin-loaded propolis-based NLC (NLC-P-α-M) had nanoscale particle sizes (72.7 ± 1.082 nm and 80.3 ± 1.015 nm, respectively), neutral surface zeta potential (ranging between +10 mV and -10 mV), and good particle size distribution (indicated by a polydispersity index of <0.3). The NLC-P-α-M exhibited good entrapment efficiency of 87.972 ± 0.246%. Dissolution testing indicated a ~13-fold increase in the solubility of α-mangostin compared to α-mangostin powder alone. The incorporation into the propolis-based NLC system correlated well with the enhanced antioxidant activity of α-mangostin (p < 0.01) compared to NLC-P and α-mangostin alone. Therefore, the modification of the delivery system by incorporating α-mangostin into the propolis-based NLC overcomes the physicochemical challenges of α-mangostin while enhancing its antioxidant effectiveness.


Subject(s)
Ascomycota , Propolis , Antioxidants/pharmacology , Excipients , Water , Lipids
8.
Pharmaceutics ; 13(9)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34575488

ABSTRACT

Cyclosporine A (CsA) is a potent immunosuppressant for treating ulcerative colitis (UC). However, owing to severe systemic side effects, CsA application in UC therapy remains limited. Herein, a colon-targeted drug delivery system consisting of CsA crystals (CsAc)-loaded, Eudragit S 100 (ES)-coated alginate microparticles (CsAc-EAMPs) was established to minimize systemic side effects and enhance the therapeutic efficacy of CsA. Homogeneously-sized CsAs (3.1 ± 0.9 µm) were prepared by anti-solvent precipitation, followed by the fabrication of 47.1 ± 6.5 µm-sized CsAc-EAMPs via ionic gelation and ES coating. CsAc-EAMPs exhibited a high drug loading capacity (48 ± 5%) and a CsA encapsulation efficacy of 77 ± 9%. The in vitro drug release study revealed that CsA release from CsAc-EAMPs was suppressed under conditions simulating the stomach and small intestine, resulting in minimized systemic absorption and side effects. Following exposure to the simulated colon conditions, along with ES dissolution and disintegration of alginate microparticles, CsA was released from CsAc-EAMPs, exhibiting a sustained-release profile for up to 24 h after administration. Given the effective colonic delivery of CsA molecules, CsAc-EAMPs conferred enhanced anti-inflammatory activity in mouse model of dextran sulfate sodium (DSS)-induced colitis. These findings suggest that CsAc-EAMPs is a promising drug delivery system for treating UC.

9.
Carbohydr Polym ; 270: 118387, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34364628

ABSTRACT

This study demonstrates the development of a nitric oxide (NO)-releasing hydrogel wound dressing and its efficacy at accelerating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. A DETA/NONOate-doped alginate (Alg-DETA/NO) hydrogel was synthesized using alginate as a hydrogel-forming wound dressing material and diethylenetriamine/diazeniumdiolate (DETA/NONOate) as an NO donor. Alg-DETA/NO exhibited a prolonged NO release profile over a period of 4 days. The rheological properties of Alg-DETA/NO did not differ significantly from those of pure alginate. Importantly, Alg-DETA/NO showed potent antibacterial activity against MRSA, with minimal toxicity to mouse fibroblasts. The application of Alg-DETA/NO to MRSA-infected wounds in a mouse model showed a favorable wound healing with accelerated wound-size reduction and reduced skin bacterial infection. Additionally, histological examination revealed that Alg-DETA/NO reduced inflammation at the wound site and promoted re-epithelialization, angiogenesis, and collagen deposition. Thus, Alg-DETA/NO presented herein could serve as a safe and potent hydrogel dressing for the treatment of MRSA-infected wounds.


Subject(s)
Alginates/chemistry , Hydrogels/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Nitric Oxide/pharmacology , Polyamines/pharmacology , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Azo Compounds/chemistry , Azo Compounds/pharmacology , Bandages , Collagen/drug effects , Mice , Mice, Inbred ICR , Nitric Oxide/metabolism , Nitric Oxide Donors/pharmacology , Peroxidase/metabolism , Polyamines/chemistry , Re-Epithelialization/drug effects
10.
ACS Appl Mater Interfaces ; 13(26): 30383-30396, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34162207

ABSTRACT

Although nitric oxide (NO) has been emerging as a novel local anticancer agent because of its potent cytotoxic effects and lack of off-target side effects, its clinical applications remain a challenge because of the short effective diffusion distance of NO that limits its anticancer activity. In this study, we synthesized albumin-coated poly(lactic-co-glycolic acid) (PLGA)-conjugated linear polyethylenimine diazeniumdiolate (LP/NO) nanoparticles (Alb-PLP/NO NPs) that possess tumor-penetrating and NO-releasing properties for an effective local treatment of melanoma. Sufficient NO-loading and prolonged NO-releasing characteristics of Alb-PLP/NO NPs were acquired through PLGA-conjugated LP/NO copolymer (PLP/NO) synthesis, followed by nanoparticle fabrication. In addition, tumor penetration ability was rendered by the electrostatic adsorption of the albumin on the surface of the nanoparticles. The Alb-PLP/NO NPs showed enhanced intracellular NO delivery efficiency and cytotoxicity to B16F10 murine melanoma cells. In B16F10-tumor-bearing mice, the Alb-PLP/NO NPs showed improved extracellular matrix penetration and spatial distribution in the tumor tissue after intratumoral injection, resulting in enhanced antitumor activity. Taken together, the results suggest that Alb-PLP/NO NPs represent a promising new modality for the local treatment of melanoma.


Subject(s)
Antineoplastic Agents/therapeutic use , Melanoma/drug therapy , Nanoparticles/therapeutic use , Nitric Oxide Donors/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Azo Compounds/chemical synthesis , Azo Compounds/therapeutic use , Azo Compounds/toxicity , Cattle , Cell Line, Tumor , Drug Liberation , Melanoma/pathology , Mice, Inbred C57BL , Nanoparticles/chemistry , Nanoparticles/toxicity , Nitric Oxide/metabolism , Nitric Oxide Donors/chemical synthesis , Nitric Oxide Donors/toxicity , Polyethyleneimine/analogs & derivatives , Polyethyleneimine/toxicity , Polylactic Acid-Polyglycolic Acid Copolymer/chemical synthesis , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/toxicity , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/toxicity
11.
Pharmaceutics ; 14(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35056917

ABSTRACT

Polymicrobial wound infections are a major cause of infectious disease-related morbidity and mortality worldwide. In this study, we prepared a nitric oxide (NO)-releasing oxidized bacterial cellulose/chitosan (BCTO/CHI) crosslinked hydrogel to effectively treat polymicrobial wound infections. Linear polyethyleneimine diazeniumdiolate (PEI/NO) was used as the NO donor. The aldehyde group of BCTO and the amine of CHI were used as crosslinked hydrogel-based materials; their high NO loading capacity and antibacterial activity on the treatment of polymicrobial-infected wounds were investigated. The blank and NO-loaded crosslinked hydrogels, namely BCTO-CHI and BCTO-CHI-PEI/NO, were characterized according to their morphologies, chemical properties, and drug loading. BCTO-CHI-PEI/NO exhibited sustained drug release over four days. The high NO loading of BCTO-CHI-PEI/NO enhanced the bactericidal efficacy against multiple bacteria compared with BCTO-CHI. Furthermore, compared with blank hydrogels, BCTO-CHI-PEI/NO has a favorable rheological property due to the addition of a polymer-based NO donor. Moreover, BCTO-CHI-PEI/NO significantly accelerated wound healing and re-epithelialization in a mouse model of polymicrobial-infected wounds. We also found that both crosslinked hydrogels were nontoxic to healthy mammalian fibroblast cells. Therefore, our data suggest that the BCTO-CHI-PEI/NO developed in this study improves the efficacy of NO in the treatment of polymicrobial wound infections.

12.
Pharmaceutics ; 12(10)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998349

ABSTRACT

Nitric oxide (NO), a highly reactive and lipophilic molecule, is one of the molecules present in the wound environment and implicated as an important regulator in all phases of wound healing. Here, we developed an NO-releasing thermoresponsive hydrogel (GSNO-PL/AL) composed of S-nitrosoglutathione (GSNO), pluronic F127 (PL), and alginate (AL) for the treatment of infected wounds. The GSNO was incorporated into the thermoresponsive PL/AL hydrogel, and differential scanning calorimetry techniques were used for the hydrogel characterization. The hydrogel was assessed by in vitro NO release, antibacterial activity, cytotoxicity, and wound-healing activity. The GSNO-PL/AL hydrogel demonstrated thermal responsiveness and biocompatibility, and it showed sustained NO release for 7 days. It also exhibited potent bactericidal activity against Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative multidrug-resistant Pseudomonas aeruginosa (MRPA). Moreover, the GSNO-PL/AL treatment of MRPA-infected wounds accelerated healing with a reduced bacterial burden in the wounds. The GSNO-PL/AL hydrogel would be a promising option for the treatment of infected wounds.

13.
Biomacromolecules ; 21(9): 3571-3581, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32701266

ABSTRACT

In this study, we developed oral core-shell nanoparticles composed of curcumin nanocrystals in the core and chitosan/alginate multilayers in the shell for inflammation-targeted alleviation of ulcerative colitis (UC). The release rate of curcumin from the core-shell nanoparticles was low at a pH mimicking the stomach and small intestine, whereas it was higher at a pH mimicking the colon. Further, biodistribution studies in the gastrointestinal tract of mice showed that distribution of nanoparticles was significantly higher in the colon than that in the stomach and small intestine. Quantitative analysis of drugs in colonic tissues and confocal imaging of colons revealed preferential accumulation of nanoparticles in inflamed tissues than that in healthy tissues. In vivo anti-inflammatory studies revealed that nanoparticles exhibit enhanced efficacy in alleviating inflammation-related symptoms in a mouse colitis model. The results suggest that the core-shell nanoparticles presented here can be exploited as efficient colon-targeted drug delivery systems for UC therapy.


Subject(s)
Colitis, Ulcerative , Curcumin , Nanoparticles , Animals , Colitis, Ulcerative/drug therapy , Curcumin/pharmacology , Curcumin/therapeutic use , Drug Carriers/therapeutic use , Drug Delivery Systems , Hydrogen-Ion Concentration , Inflammation/drug therapy , Mice , Polyelectrolytes/therapeutic use , Tissue Distribution
14.
Pharmaceutics ; 12(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630779

ABSTRACT

S-nitrosoglutathione (GSNO) has emerged as a potent agent for the treatment of infected cutaneous wounds. However, fabrication of GSNO-containing nanoparticles has been challenging due to its high hydrophilicity and degradability. The present study aimed to fabricate nanoparticles using newly synthesized GSNO-conjugated poly(lactic-co-glycolic acid) (PLGA) (GSNO-PLGA; GPNPs). Since hydrophilic GSNO was covalently bound to hydrophobic PLGA, loss of GSNO during the nanoparticle fabrication process was minimized, resulting in sufficient loading efficiency (2.32% of GSNO, 0.07 µmol/mg of NO). Real-time NO release analysis revealed biphasic NO release by GPNPs, including initial burst release within 3 min and continuous controlled release for up to 11.27 h, due to the differential degradation rates of the -SNO groups located at the surface and inside of GPNPs. Since GPNPs could deliver NO more efficiently than GSNO in response to increased interaction with bacteria, the former showed enhanced antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA) at the same equivalent concentrations of NO. Finally, the facilitating effects of GPNPs on infected wound healing were demonstrated in MRSA-challenged full-thickness wound mouse model. Collectively, the results suggested GPNPs as an ideal nanoparticle formulation for the treatment of MRSA-infected cutaneous wounds.

15.
Int J Biol Macromol ; 142: 680-692, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31622708

ABSTRACT

Bacterial biofilms on wounds impair the healing process and often lead to chronic wounds. Chitosan is a well-known biopolymer with antimicrobial and anti-biofilm effects. S-nitrosoglutathione (GSNO) has been identified as a promising nitric oxide (NO) donor to defend against pathogenic biofilms and enhance wound healing activities. In this study, we prepared NO-releasing chitosan film (CS/NO film) and evaluated its anti-biofilm activity and in vivo wound healing efficacy against methicillin-resistant Staphylococcus aureus (MRSA) biofilm-infected wounds in diabetic mice. The in vitro release study showed sustained release of NO over 3 days in simulated wound fluid. The CS/NO film significantly enhanced antibacterial activity against MRSA by > 3 logs reduction in bacterial viability. Moreover, CS/NO film exhibited a 3-fold higher anti-biofilm activity than the control and CS film. In in vivo MRSA biofilm-infected wounds, the CS/NO film-treated group showed faster biofilm dispersal, wound size reduction, epithelialization rates, and collagen deposition than the untreated and CS film-treated groups. Therefore, the CS/NO film investigated in this study could be a promising approach for the treatment of MRSA biofilm-infected wounds.


Subject(s)
Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Nitric Oxide/chemistry , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Bandages , Biofilms , Cell Line , Cell Survival , Collagen/drug effects , Diabetes Mellitus, Experimental , Drug Delivery Systems , Drug Liberation , Hydrogels/chemistry , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Mice, Inbred ICR , Nitric Oxide/pharmacology
16.
Pharmaceutics ; 11(10)2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31569746

ABSTRACT

The eradication of bacteria from wound sites and promotion of healing are essential for treating infected wounds. Nitric oxide (NO) is desirable for these purposes due to its ability to accelerate wound healing and its broad-spectrum antibacterial effects. We developed an in situ hydrogel-forming/NO-releasing powder dressing (NO/GP), which is a powder during storage and forms a hydrogel when applied to wounds, as a novel NO-releasing formulation to treat infected wounds. An NO/GP fine powder (51.5 µm) was fabricated by blending and micronizing S-nitrosoglutathione (GSNO), alginate, pectin, and polyethylene glycol (PEG). NO/GP remained stable for more than four months when stored at 4 or 37 °C. When applied to wounds, NO/GP absorbed wound fluid and immediately converted to a hydrogel. Additionally, wound fluid triggered a NO release from NO/GP for more than 18 h. The rheological properties of hydrogel-transformed NO/GP indicated that NO/GP possesses similar adhesive properties to marketed products (Vaseline). NO/GP resulted in a 6-log reduction in colony forming units (CFUs) of methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, which are representative drug-resistant gram-positive and -negative bacteria, respectively. The promotion of wound healing by NO/GP was demonstrated in mice with full-thickness wounds challenged with MRSA and P. aeruginosa. Thus, NO/GP is a promising formulation for the treatment of infected wounds.

17.
Mater Sci Eng C Mater Biol Appl ; 103: 109741, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349480

ABSTRACT

Wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) biofilm represent a high risk in patients with diabetes. Nitric oxide (NO) has shown promise in dispersing biofilm and wound healing. For an effective treatment of MRSA biofilm-infected wounds, however, NO needs to be supplied to the biofilm matrix in a sustainable manner due to a short half-life and limited diffusion distance of NO. In this study, polyethylenimine/diazeniumdiolate (PEI/NONOate)-doped PLGA nanoparticles (PLGA-PEI/NO NPs) with an ability to bind to the biofilm matrix are developed to facilitate the NO delivery to MRSA biofilm-infected wound. In simulated wound fluid, PLGA-PEI/NO NPs show an extended NO release over 4 days. PLGA-PEI/NO NPs firmly bind to the MRSA biofilm matrix, resulting in a greatly enhanced anti-biofilm activity. Moreover, PLGA-PEI/NO NPs accelerate healing of MRSA biofilm-infected wounds in diabetic mice along with complete biofilm dispersal and reduced bacterial burden. These results suggest that the biofilm-binding NO-releasing NPs represent a promising NO delivery system for the treatments of biofilm-infected chronic wounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Diabetes Complications/drug therapy , Methicillin-Resistant Staphylococcus aureus/drug effects , Nanoparticles/chemistry , Staphylococcal Skin Infections/drug therapy , Wounds and Injuries/drug therapy , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Azo Compounds/chemistry , Biofilms/drug effects , Diabetes Complications/microbiology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/microbiology , Drug Liberation , Male , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice, Inbred BALB C , Mice, Inbred ICR , Nitric Oxide/pharmacokinetics , Polyethyleneimine/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Staphylococcal Skin Infections/complications , Wound Healing/drug effects , Wounds and Injuries/complications , Wounds and Injuries/microbiology , Wounds and Injuries/pathology
18.
Pharmaceutics ; 11(5)2019 May 15.
Article in English | MEDLINE | ID: mdl-31096709

ABSTRACT

Adhesion of nanoparticles (NPs) to the bacterial cell wall by modifying their physicochemical properties can improve the antibacterial activity of antibiotic. In this study, we prepared positively charged clindamycin-loaded poly (lactic-co-glycolic acid)-polyethylenimine (PLGA-PEI) nanoparticles (Cly/PPNPs) and negatively charged clindamycin-loaded PLGA NPs (Cly/PNPs) and investigated the effect of NP adhesion to bacteria on the treatment of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds. The Cly/PPNPs and Cly/PNPs were characterized according to particle size, polydispersity index, surface charge, and drug loading. Both Cly/PPNPs and Cly/PNPs exhibited sustained drug release over 2 days. The Cly/PPNPs bind to the MRSA surface, thereby enhancing bactericidal efficacy against MRSA compared with the Cly/PNPs. Furthermore, compared with other groups, Cly/PPNPs significantly accelerated the healing and re-epithelialization of wounds in a mouse model of a MRSA-infected wounds. We also found that both NPs are harmless to healthy fibroblast cells. Therefore, our results suggest that the Cly/PPNPs developed in this study improve the efficacy of clindamycin for the treatment of MRSA-infected wounds.

19.
Asian J Pharm Sci ; 14(1): 86-94, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32104441

ABSTRACT

Particle shape has been recognized as one of the key properties of nanoparticles in biomedical applications including targeted drug delivery. Targeting ability of shape-engineered particles depends largely on targeting ligands conjugated on the particle surface. However, poor capacity for surface ligand conjugation remains a problem in anisotropic nanoparticles made with biodegradable polymers such as PLGA. In this study, we prepared anisotropic PLGA nanoparticles with abundant conjugatable surface functional groups by a film stretching-based fabrication method with poly (ethylene-alt-maleic acid) (PEMA). Scanning electron microscopy images showed that microrods and nanorods were successfully fabricated by the PEMA-based film stretching method. The presence of surface carboxylic acid groups was confirmed by confocal microscopy and zeta potential measurements. Using the improved film-stretching method, the amount of protein conjugated to the surface of nanorods was increased three-fold. Transferrin-conjugated, nanorods fabricated by the improved method exhibited higher binding and internalization than unmodified counterparts. Therefore, the PEMA-based film-stretching system presented in this study would be a promising fabrication method for non-spherical biodegradable polymeric micro- and nanoparticles with high capacity of surface modifications for enhanced targeted delivery.

20.
Eur J Pharm Biopharm ; 132: 94-102, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30223029

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds have become a significant clinical issue worldwide. Recently, nitric oxide (NO) has emerged as a potent antibacterial agent against MRSA infections and a wound-healing enhancer. Nevertheless, clinical applications of NO have been largely restricted by its gaseous state and short half-life. In this study, our aim was to develop S-nitrosoglutathione (GSNO, an endogenous NO donor)-loaded poly(lactic-co-glycolic acid) [PLGA] microparticles (GSNO-MPs) that release NO over a prolonged period, to accelerate the healing of MRSA-infected wounds with less frequent dosing. GSNO was successfully encapsulated into PLGA microparticles by a solid-in-oil-in-water emulsion solvent evaporation method. Scanning electron microscopy and X-ray diffraction analyses confirmed the successful fabrication of GSNO-MPs. The latter released NO in a prolonged manner over 7 days and exerted a remarkable antibacterial activity against MRSA in a concentration- and time-dependent manner. Moreover, GSNO-MPs had good antibacterial efficacy and were found to accelerate wound healing in a mouse model of MRSA-infected wounds. Therefore, NO-releasing MPs devised in this study may be a promising option for the treatment of cutaneous wounds infected by drug-resistant bacteria such as MRSA.


Subject(s)
S-Nitrosoglutathione/administration & dosage , Staphylococcal Infections/drug therapy , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Delayed-Action Preparations , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Mice, Inbred ICR , Microscopy, Electron, Scanning , Microspheres , Nitric Oxide/metabolism , Nitric Oxide Donors/administration & dosage , Nitric Oxide Donors/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , S-Nitrosoglutathione/pharmacology , Staphylococcal Infections/microbiology , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...