Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Med Chem ; 240: 114577, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35810535

ABSTRACT

Visceral leishmaniasis is a potentially fatal disease caused by the parasitic protists, Leishmania donovani and L. infantum. Current treatments remain unsuitable due to cost, the need for hospitalization, variable efficacy against different species, toxicity and emerging resistance. Herein, we report the SAR exploration of the novel hit 4-Fluoro-N-(5-(4-methoxyphenyl)-1-methyl-1H-imidazole-2-yl)benzamide [1] previously identified from a high throughput screen against Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. An extensive and informative set of analogues were synthesized incorporating key modifications around the scaffold resulting in improved potency, whilst the majority of compounds maintained low cytotoxicity against human THP-1 macrophages that are target cells for these pathogens. New lead compounds identified within this study also maintained desirable physicochemical properties, improved metabolic stability in vitro and displayed no significant mitotoxicity against HepG2 cell lines. This compound class warrants continued investigation towards development as a novel treatment for Visceral Leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmaniasis, Visceral , Trypanosoma cruzi , Antiprotozoal Agents/chemistry , Humans , Imidazoles/therapeutic use , Leishmaniasis, Visceral/drug therapy
2.
ACS Biomater Sci Eng ; 8(4): 1573-1582, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35353486

ABSTRACT

Influenza virus is a major cause of death on a global scale. Seasonal vaccines have been developed to combat influenza; however, they are not always highly effective. One strategy to develop a more broadly active influenza vaccine is the use of multiple rounds of layered consensus buildings to generate recombinant antigens, termed computationally optimized broadly reactive antigen (COBRA). Immunization with the COBRA hemagglutinin (HA) can elicit broad protection against multiple strains of a single influenza subtype (e.g., H1N1). We formulated a COBRA H1 HA with a stimulator of interferon genes agonist cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) into a nasal gel for vaccination against influenza. The gel formulation was designed to increase mucoadhesion and nasal retention of the antigen and adjuvant to promote a strong mucosal response. It consisted of a Schiff base-crosslinked hydrogel between branched polyethyleneimine and oxidized dextran. Following a prime-boost-boost schedule, an intranasal gel containing cGAMP and model antigen ovalbumin (OVA) led to the faster generation of serum IgG, IgG1, and IgG2c and significantly greater serum IgG1 levels on day 42 compared to soluble controls. Additionally, OVA-specific IgA was detected in nasal, vaginal, and fecal samples for all groups, except the vehicle control. When the COBRA HA was given intranasally in a prime-boost schedule, the mice receiving the gel containing the COBRA and cGAMP had significantly higher serum IgG and IgG2c at day 41 compared to all groups, and only this group had IgA levels above the background in vaginal, nasal, and fecal samples. Overall, this study indicates the utility of an intranasal gel for the delivery of COBRAs for the generation of serum and mucosal humoral responses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Immunoglobulin A , Immunoglobulin G , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/prevention & control , Mice , Orthomyxoviridae Infections/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL