Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Neuroanat ; 138: 102419, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38609056

ABSTRACT

Huntington's disease (HD) is a hereditary condition characterized by the gradual deterioration of nerve cells in the striatum. Recent scientific investigations have revealed the promising potential of Extracellular vesicles (EVs) as a therapy to mitigate inflammation and enhance motor function. This study aimed to examine the impact of administering EVs derived from human umbilical cord blood (HUCB) on the motor abilities and inflammation levels in a rat model of HD. After ultracentrifugation to prepare EVs from HUCB to determine the nature of the obtained contents, the expression of CD markers 81 and 9, the average size and also the morphology of its particles were investigated by DLS and Transmission electron microscopy (TEM). Then, in order to induce the HD model, 3-nitropropionic acid (3-NP) neurotoxin was injected intraperitoneal into the rats, after treatment by HUCB-EVs, rotarod, electromyogram (EMG) and the open field tests were performed on the rats. Finally, after rat sacrifice and the striatum was removed, Hematoxylin and eosin staining (H&E), stereology, immunohistochemistry, antioxidant tests, and western blot were performed. Our results showed that the contents of the HUCB-EVs express the CD9 and CD81 markers and have spherical shapes. In addition, the injection of HUCB-EVs improved motor and neuromuscular function, reduced gliosis, increased antioxidant activity and inflammatory factor, and partially prevented the decrease of neurons. The findings generally show that HUCB-EVs have neuroprotective effects and reduce neuroinflammation from the toxic effects of 3-NP, which can be beneficial for the recovery of HD.


Subject(s)
Disease Models, Animal , Extracellular Vesicles , Fetal Blood , Gliosis , Huntington Disease , Neuroprotective Agents , Animals , Extracellular Vesicles/metabolism , Huntington Disease/metabolism , Huntington Disease/pathology , Rats , Humans , Gliosis/pathology , Neuroprotective Agents/pharmacology , Male , Corpus Striatum/metabolism , Corpus Striatum/pathology , Rats, Wistar , Nitro Compounds , Propionates
2.
Behav Brain Res ; 465: 114963, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38499158

ABSTRACT

Lisdexamfetamine (LDX) is one of the drugs commonly used to treat attention deficit hyperactivity disorder (ADHD). However, its neurological side effects, particularly on cognition, are not fully understood. The present study focused on memory in rats treated with four weeks of LDX injection. We compared LDX-treated rats with control ones, using several methods to evaluate the behavioral responses and electrophysiological, molecular, and histological properties in the hippocampus. Our findings demonstrated that subchronic administration of LDX impaired behavioral performance in all memory assessment tests (Y maze, Morris Water Maze, and Shuttle box). Although LDX did not alter population spike (PS) amplitude, it increased the field excitatory postsynaptic potential (fEPSP) slope of evoked potentials of LTP components. Also, in addition to an increase in expression of caspase-3 in the hippocampus, which indicates the susceptibility to apoptosis in LDX-treated rats, the number of microglia and astrocytes went up significantly in the LDX group. Moreover, Sholl's analysis showed an increase in the soma size and total process length in both hippocampal astrocytes and microglia. Overall, because of these destructive effects of LDX on the hippocampus, which is one of the critical memory-related areas of the brain, the findings of this investigation provide evidence to show the disruption of memory-related variables following the LDX. However, more research is needed to clarify it.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Central Nervous System Stimulants , Rats , Animals , Lisdexamfetamine Dimesylate/therapeutic use , Dextroamphetamine , Treatment Outcome , Attention Deficit Disorder with Hyperactivity/drug therapy , Amnesia/chemically induced , Central Nervous System Stimulants/pharmacology , Double-Blind Method
3.
Metab Brain Dis ; 38(8): 2735-2750, 2023 12.
Article in English | MEDLINE | ID: mdl-37851137

ABSTRACT

Epilepsy significantly reduces the patient's quality of life, and we still need to develop new therapeutic approaches to control it. Transplantation of cells such as Sertoli cells (SCs), having a potent ability to release a variety of growth and immunoprotective substances, have made them a potential candidate to deal with neurological diseases like epilepsy. Hence, this study aims to evaluate whether SCs transplant effectively protects the hippocampus astrocytes and neurons to oppose seizure damage. For this purpose, the effects of bilateral intrahippocampal transplantation of SCs were investigated on the rats with the pentylenetetrazol (PTZ) induced seizure. After one-month, post-graft analysis was performed regarding behavior, immunohistopathology, and the distribution of the hippocampal cells. Our findings showed SCs transplantation reduced astrogliosis, astrocytes process length, the number of branches, and intersections distal to the soma of the hippocampus in the seizure group. In rats with grafted SCs, there was a drop in the hippocampal caspase-3 expression. Moreover, the SCs showed another protective impact, as shown by an improvement in pyramidal neurons' number and spatial distribution. The findings suggested that SCs transplantation can potently modify astrocytes' reactivation and inflammatory responses.


Subject(s)
Epilepsy , Sertoli Cells , Male , Rats , Humans , Animals , Sertoli Cells/pathology , Quality of Life , Seizures/drug therapy , Epilepsy/drug therapy , Hippocampus/metabolism , Cell Death , Amnesia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...