Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Plant Cell Environ ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38922904

ABSTRACT

A short period of exposure to elevated CO2 is known to decrease evapotranspiration via stomatal closure. Based on theoretical evaluation of a canopy transpiration model, we hypothesized that this decrease in the evapotranspiration of rice under elevated CO2 was greater under higher temperature conditions due to an increased sensitivity of transpiration to changes in CO2 induced by the greater vapour pressure deficit. In a temperature gradient chamber-based experiment, a 200 ppm increase in CO2 concentration led to 0.4 mm (-7%) and 1.5 mm (-15%) decreases in 12 h evapotranspiration under ambient temperature and high temperature (+3.7°C) conditions, respectively. Model simulations revealed that the greater vapour pressure deficit under higher temperature conditions explained the variations in the reduction of evapotranspiration observed under elevated CO2 levels between the temperature treatments. Our study suggests the utility of a simple modelling framework for mechanistic understanding of evapotranspiration and crop energy balance system under changing environmental conditions.

2.
Data Brief ; 54: 110352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38595907

ABSTRACT

Climate change has a significant impact on rice grain appearance quality; in particular, high temperatures during the grain filling period increase the rate of chalky immature grains, reducing the marketability of rice. Heat-tolerant cultivars have been bred and released to reduce the rate of chalky grain and improve rice quality under high temperatures, but the ability of these cultivars to actually reduce chalky grain content has never been demonstrated due to the lack of integrated datasets. Here, we present a dataset collected through a systematic literature search from publicly available data sources, for the quantitative analysis of the impact of meteorological factors on grain appearance quality of various rice cultivars with contrasted heat tolerance levels. The dataset contains 1302 field observations of chalky grain rates (%) - a critical trait affecting grain appearance sensitive to temperature shocks - for 48 cultivars covering five different heat-tolerant ranks (HTRs) collected at 44 sites across Japan. The dataset also includes the values of key meteorological variables during the grain filling period, such as the cumulative mean air temperature above the threshold temperature (TaHD), mean solar radiation, and mean relative humidity over 20 days after heading, obtained from a gridded daily meteorological dataset with a 1-km resolution developed by the National Agriculture and Food Research Organization. The dataset covers major commercial rice cultivars cultivated in Japan in different environmental conditions. It is a useful resource for analyzing the climate change impact on crop quality and assess the effectiveness of genetic improvements in heat tolerance. Its value has been illustrated in the research article entitled "Effectiveness of heat tolerance rice cultivars in preserving grain appearance quality under high temperatures - A meta-analysis", where the dataset was used to develop a statistical model quantifying the effects of high temperature on grain quality as a function of cultivar heat tolerance.

3.
Front Biosci (Landmark Ed) ; 28(10): 265, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37919086

ABSTRACT

The oral cavity serves as the initial segment of the digestive system and is responsible for both nutritional supplementation and the mechanical breakdown of food. It comprises distinct hard and soft tissues; the oral mucosa is subject to mechanical stress and interaction with microbiota. In oral cancer, tumors exhibit abnormal cellular networks and aberrant cell-cell interactions arising from complex interplays between environmental and genetic factors. This presents a challenge for clinicians and researchers, impeding the understanding of mechanisms driving oral cancer development and treatment strategies. Lesions with dysplastic features are categorized under oral potentially malignant disorders, including oral leukoplakia, erythroplakia, oral submucous fibrosis, and proliferative verrucous leukoplakia, carrying a high malignancy risk. In this review, we discuss oral cancer cell characteristics and the stiffness of the surrounding matrix. We also discuss the significance of stiffness equilibrium in oral potentially malignant disorders, particularly oral submucous fibrosis, possibly triggered by mechanical stress such as betel quid chewing.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Oral Submucous Fibrosis , Precancerous Conditions , Humans , Oral Submucous Fibrosis/complications , Oral Submucous Fibrosis/pathology , Precancerous Conditions/complications , Precancerous Conditions/pathology , Leukoplakia, Oral/complications , Leukoplakia, Oral/pathology , Mouth Neoplasms/etiology , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/pathology
4.
Plant J ; 114(4): 729-742, 2023 05.
Article in English | MEDLINE | ID: mdl-36974032

ABSTRACT

Improving crop yield potential through an enhanced response to rising atmospheric CO2 levels is an effective strategy for sustainable crop production in the face of climate change. Large-sized panicles (containing many spikelets per panicle) have been a recent ideal plant architecture (IPA) for high-yield rice breeding. However, few breeding programs have proposed an IPA under the projected climate change. Here, we demonstrate through the cloning of the rice (Oryza sativa) quantitative trait locus for MORE PANICLES 3 (MP3) that the improvement in panicle number increases grain yield at elevated atmospheric CO2 levels. MP3 is a natural allele of OsTB1/FC1, previously reported as a negative regulator of tiller bud outgrowth. The temperate japonica allele advanced the developmental process in axillary buds, moderately promoted tillering, and increased the panicle number without negative effects on the panicle size or culm thickness in a high-yielding indica cultivar with large-sized panicles. The MP3 allele, containing three exonic polymorphisms, was observed in most accessions in the temperate japonica subgroups but was rarely observed in the indica subgroup. No selective sweep at MP3 in either the temperate japonica or indica subgroups suggested that MP3 has not been involved and utilized in artificial selection during domestication or breeding. A free-air CO2 enrichment experiment revealed a clear increase of grain yield associated with the temperate japonica allele at elevated atmospheric CO2 levels. Our findings show that the moderately increased panicle number combined with large-sized panicles using MP3 could be a novel IPA and contribute to an increase in rice production under climate change with rising atmospheric CO2 levels.


Subject(s)
Oryza , Carbon Dioxide , Alleles , Plant Breeding , Edible Grain/genetics
5.
BMJ Open ; 12(9): e059615, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36100307

ABSTRACT

INTRODUCTION: In early-stage oral tongue squamous cell carcinoma (OTSCC), elective neck dissection (END) is recommended when occult lymph node metastasis is suspected; however, there is no unanimous consensus on the risks and benefits of END in such cases. The management of clinically node-negative (cN0) OTSCC remains controversial. This study, therefore, aimed to evaluate the efficacy of END and its impact on the quality of life (QoL) of patients with cN0 OTSCC. METHODS AND ANALYSIS: This is a prospective, multicentre, nonrandomised observational study. The choice of whether to perform END at the same time as resection of the primary tumour is based on institutional policy and patient preference. The primary endpoint of this study is 3-year overall survival. The secondary endpoints are 3-year disease-specific survival, 3-year relapse-free survival and the impact on patient QoL. Propensity score-matching analysis will be performed to reduce selection bias. ETHICS AND DISSEMINATION: This study was approved by the Clinical Research Review Board of the Nagasaki University. The protocol of this study was registered at the University Hospital Medical Information Network Clinical Trials Registry. The datasets generated during the current study will be available from the corresponding author on reasonable request. The results will be disseminated internationally, through scientific and professional conferences and in peer-reviewed medical journals. TRIAL REGISTRATION NUMBER: UMIN000027875.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Tongue Neoplasms , Head and Neck Neoplasms/surgery , Humans , Neck Dissection/methods , Neoplasm Recurrence, Local/surgery , Prospective Studies , Quality of Life , Squamous Cell Carcinoma of Head and Neck/surgery , Tongue Neoplasms/pathology , Tongue Neoplasms/surgery
6.
Physiol Plant ; 174(2): e13644, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35112363

ABSTRACT

The recovery from photoinhibition is much slower in photosystem (PS) I than in PSII; therefore, the susceptibility of PSI to photoinhibition is important with respect to photosynthetic production under special physiological conditions. Previous studies have shown that repetitive short-pulse (rSP) illumination selectively induces PSI photoinhibition. Depending on the growth light intensity or the variety/species of the plant, PSI photoinhibition is different, but the underlying mechanisms remain unknown. Here, we aimed to clarify whether the differences in the susceptibility of PSI to photoinhibition depend on environmental factors or on rice varieties and which physiological properties of the plant are related to this susceptibility. We exposed mature leaves of rice plants to rSP illumination. We examined the effects of elevated CO2 concentration and low N during growth on the susceptibility of PSI to photoinhibition and compared it in 12 different varieties. We fitted the decrease in the quantum yield of PSI during rSP illumination and estimated a parameter indicating susceptibility. Low N level increased susceptibility, whereas elevated CO2 concentration did not. The susceptibility differed among different rice varieties, and many indica varieties showed higher susceptibility than the temperate japonica varieties. Susceptibility was negatively correlated with the total chlorophyll content and N content. However, the decrease in P m ' value, an indicator of damaged PSI, was positively correlated with chlorophyll content. This suggests that in leaves with a larger electron transport capacity, the overall PSI activity may be less susceptible to photoinhibition, but more damaged PSI may accumulate during rSP illumination.


Subject(s)
Oryza , Photosystem II Protein Complex , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Chlorophyll , Light , Oryza/metabolism , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/physiology
7.
Sci Data ; 9(1): 58, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173186

ABSTRACT

Reliable estimates of the impacts of climate change on crop production are critical for assessing the sustainability of food systems. Global, regional, and site-specific crop simulation studies have been conducted for nearly four decades, representing valuable sources of information for climate change impact assessments. However, the wealth of data produced by these studies has not been made publicly available. Here, we develop a global dataset by consolidating previously published meta-analyses and data collected through a new literature search covering recent crop simulations. The new global dataset builds on 8703 simulations from 202 studies published between 1984 and 2020. It contains projected yields of four major crops (maize, rice, soybean, and wheat) in 91 countries under major emission scenarios for the 21st century, with and without adaptation measures, along with geographical coordinates, current temperature and precipitation levels, projected temperature and precipitation changes. This dataset provides a solid basis for a quantitative assessment of the impacts of climate change on crop production and will facilitate the rapidly developing data-driven machine learning applications.

8.
Glob Chang Biol ; 28(8): 2689-2710, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35043531

ABSTRACT

Crop models are powerful tools to support breeding because of their capability to explore genotype × environment×management interactions that can help design promising plant types under climate change. However, relationships between plant traits and model parameters are often model specific and not necessarily direct, depending on how models formulate plant morphological and physiological features. This hinders model application in plant breeding. We developed a novel trait-based multi-model ensemble approach to improve the design of rice plant types for future climate projections. We conducted multi-model simulations targeting enhanced productivity, and aggregated results into model-ensemble sets of phenotypic traits as defined by breeders rather than by model parameters. This allowed to overcome the limitations due to ambiguities in trait-parameter mapping from single modelling approaches. Breeders' knowledge and perspective were integrated to provide clear mapping from designed plant types to breeding traits. Nine crop models from the AgMIP-Rice Project and sensitivity analysis techniques were used to explore trait responses under different climate and management scenarios at four sites. The method demonstrated the potential of yield improvement that ranged from 15.8% to 41.5% compared to the current cultivars under mid-century climate projections. These results highlight the primary role of phenological traits to improve crop adaptation to climate change, as well as traits involved with canopy development and structure. The variability of plant types derived with different models supported model ensembles to handle related uncertainty. Nevertheless, the models agreed in capturing the effect of the heterogeneity in climate conditions across sites on key traits, highlighting the need for context-specific breeding programmes to improve crop adaptation to climate change. Although further improvement is needed for crop models to fully support breeding programmes, a trait-based ensemble approach represents a major step towards the integration of crop modelling and breeding to address climate change challenges and develop adaptation options.


Subject(s)
Oryza , Adaptation, Physiological , Climate Change , Oryza/genetics , Phenotype , Plant Breeding
9.
Nat Food ; 3(7): 493-494, 2022 07.
Article in English | MEDLINE | ID: mdl-37117940
10.
Sci Total Environ ; 802: 149870, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34525703

ABSTRACT

Climate warming is expected to cause greater increases in nocturnal temperatures than daytime temperatures, thereby altering freeze-thaw cycles. Although the importance of freeze-thaw cycles in regulating soil aggregate stability and nutrient availability has attracted increasing attention, little is known about how winter nocturnal warming modulates freeze-thaw frequency, soil aggregate distribution, or the contents and mineralization of soil organic carbon (SOC) and total nitrogen (TN) in paddy fields. The nocturnal soil temperature in the upper 0-2 cm layer in a paddy field was elevated by approximately 2 °C using a passive nocturnal warming method during winter. An anaerobic experiment with a first-order reaction model was conducted to measure the C decomposition (C0) and N mineralization (N0) potentials in bulk soil and four soil aggregate fractions. Winter nocturnal warming significantly decreased freeze-thaw frequency and affected soil aggregate distribution and SOC and TN contents in <0.25 mm aggregate. Both SOC and TN fractions were significantly increased in the 0.25-1 mm aggregate but decreased in the >2 mm aggregate due to winter nocturnal warming. Winter nocturnal warming did not affect C0, N0, C0/SOC, and N0/TN in bulk soil. However, it decreased C0 and C0/SOC in all aggregates except the 0.25-1 mm aggregate, and increased N0 and N0/TN in all aggregates except the >2 mm aggregate. In the nocturnal warming treatment, the highest C0 and N0 values were found in the <0.25 mm aggregate, but only the N0 in the <0.25 mm aggregate was significantly larger than that in the other three soil aggregates. Our study indicated that winter nocturnal warming would reduce the freeze-thaw frequency and change C and N distributions in soil aggregates, resulting in increased soil N availability in the subsequent rice growth season.


Subject(s)
Carbon , Soil , Freezing , Nitrogen/analysis , Seasons
11.
Oral Oncol ; 123: 105629, 2021 12.
Article in English | MEDLINE | ID: mdl-34784507

ABSTRACT

OBJECTIVES: We aimed to evaluate the clinical value of an entire-circumferential intraoperative frozen section analysis (e-IFSA) for the complete resection of superficial squamous cell carcinoma (SCC) of the tongue. MATERIALS AND METHODS: A total 276 specimens from 51 patients with pT1-2, N0, mucosal or submucosal invasion SCC were analyzed to evaluate the diagnostic accuracy of the e-IFSA and the added value of the e-IFSA to iodine staining. The e-IFSA results were compared with the final histologic results obtained using permanent sections. All specimens for the e-IFSA were taken over the entire circumference 5 mm outside from the iodine unstained areas. The outline of the main resected specimen after taking these outer mucosal specimens were defined as the surgical margins determined by iodine staining alone. RESULTS: The e-IFSA results were in excellent agreement with final histological results (Cohen's kappa value: 0.85) and the e-IFSA showed high sensitivity (100%) and high negative predictive value (100%). The actual complete resection rate with an e-IFSA was 100% (51/51), and no patient required additional resection after surgery. In contrast, 10/51 patients (20%) patients showed residual atypical mucosal epithelium at or beyond the margin determined by iodine staining alone; this difference was statistically significant (P = 0.002). The 5-year local control rate and 5-year overall survival rate after this procedure were both 100%. CONCLUSION: An e-IFSA has additional value when performed in conjunction with iodine staining. An e-IFSA would be useful for achieving complete resection of superficial SCC of the tongue.


Subject(s)
Carcinoma, Squamous Cell , Margins of Excision , Tongue Neoplasms , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , Epithelium/pathology , Frozen Sections , Humans , Retrospective Studies , Tongue/pathology , Tongue/surgery , Tongue Neoplasms/pathology , Tongue Neoplasms/surgery
12.
Sci Total Environ ; 756: 143845, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33277011

ABSTRACT

Soil temperature is an important determinant of carbon (C) and nitrogen (N) cycling in terrestrial ecosystems, but its effects on soil organic carbon (SOC) and total nitrogen (TN) dynamics as well as rice biomass in rice paddy ecosystems are not fully understood. We conducted a five-year soil warming experiment in a single-cropping paddy field in Japan. Soil temperatures were elevated by approximate 2 °C with heating wires during the rice growing season and by approximate 1 °C with nighttime thermal blankets during the fallow season. Soil samples were collected in autumn after rice harvest and in spring after fallow each year, and anaerobically incubated at 30 °C for four weeks to determine soil C decomposition and N mineralization potentials. The SOC and TN contents, rice biomass, dissolved organic carbon (DOC) and microbial biomass carbon (MBC) concentrations were measured in the study. Soil warming did not significantly enhance rice aboveground and root biomasses, but it significantly decreased SOC and TN contents and thus decreased soil C decomposition and N mineralization potentials due to depletion of available C and N. Moreover, soil warming significantly decreased DOC concentration but significantly increased MBC concentration. The ratios of C decomposition potential to N mineralization potential, decomposition potential to SOC, and N mineralization to TN were not affected by soil warming. There were significant seasonal and annual variations in SOC, C decomposition and N mineralization potentials, soil DOC and MBC under each temperature treatments. Our study implied that soil warming can decrease soil C and N stocks in paddy ecosystem probably via stimulating microbial activities and accelerating the depletion of DOC. This study further highlights the importance of long-term in situ observation of C and N dynamics and their availabilities in rice paddy ecosystems under increasing global warming scenarios.


Subject(s)
Oryza , Soil , Carbon/analysis , Ecosystem , Japan , Soil Microbiology
13.
Glob Chang Biol ; 27(2): 402-416, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33063940

ABSTRACT

Crop production will likely face enormous challenges against the occurrences of extreme climatic events projected under future climate change. Heat waves that occur at critical stages of the reproductive phase have detrimental impacts on the grain yield formation of rice (Oryza sativa). Accurate estimates of these impacts are essential to evaluate the effects of climate change on rice. However, the accuracy of these predictions by crop models has not been extensively tested. In this study, we evaluated 14 rice growth models against four year phytotron experiments with four levels of heat treatments imposed at different times after flowering. We found that all models greatly underestimated the negative effects of heat on grain yield, suggesting that yield projections with these models do not reflect food shocks that may occur under short-term extreme heat stress (SEHS). As a result, crop model ensembles do not help to provide accurate estimates of grain yield under heat stress. We examined the functions of grain-setting rate response to temperature (TRF_GS) used in eight models and showed that adjusting the effective periods of TRF_GS improved the model performance, especially for models simulating accumulative daily temperature effects. For TRF_GS which uses daily maximum temperature averaged for the effective period, the models provided better grain yield estimates by using maximum temperatures averaged only when daily maximum temperatures exceeded the base temperature (Tbase ). An alternative method based on heating-degree days and stage-dependent heat sensitivity parameters further decreased the prediction uncertainty of grain yield under heat stress, where stage-dependent heat sensitivity was more important than heat dose for model improvement under SEHS. These results suggest the limitation of the applicability of existing rice models to variable climatic conditions and the urgent need for an alternative grain-setting function accounting for the stage-dependent heat sensitivity.


Subject(s)
Oryza , Climate Change , Edible Grain , Heat-Shock Response , Temperature
14.
PLoS One ; 15(6): e0233951, 2020.
Article in English | MEDLINE | ID: mdl-32559220

ABSTRACT

Genomic prediction (GP) is expected to become a powerful technology for accelerating the genetic improvement of complex crop traits. Several GP models have been proposed to enhance their applications in plant breeding, including environmental effects and genotype-by-environment interactions (G×E). In this study, we proposed a two-step model for plant biomass prediction wherein environmental information and growth-related traits were considered. First, the growth-related traits were predicted by GP. Second, the biomass was predicted from the GP-predicted values and environmental data using machine learning or crop growth modeling. We applied the model to a 2-year-old field trial dataset of recombinant inbred lines of japonica rice and evaluated the prediction accuracy with training and testing data by cross-validation performed over two years. Therefore, the proposed model achieved an equivalent or a higher correlation between the observed and predicted values (0.53 and 0.65 for each year, respectively) than the model in which biomass was directly predicted by GP (0.40 and 0.65 for each year, respectively). This result indicated that including growth-related traits enhanced accuracy of biomass prediction. Our findings are expected to contribute to the spread of the use of GP in crop breeding by enabling more precise prediction of environmental effects on crop traits.


Subject(s)
Biomass , Models, Genetic , Oryza/growth & development , Oryza/genetics , Genome, Plant , Genomics/methods , Genotype , Machine Learning , Phenotype , Plant Breeding
15.
Front Plant Sci ; 11: 786, 2020.
Article in English | MEDLINE | ID: mdl-32582271

ABSTRACT

Atmospheric CO2 concentration ([CO2]) has been substantially increasing. Responses of leaf photosynthesis to elevated [CO2] have been intensively investigated because leaf photosynthesis is one of the most important determinants of crop yield. The responses of photosynthesis to elevated [CO2] can depend on nitrogen (N) availability. Here, we aimed to investigate the significance of the appropriate balance between two photosystems [photosystem I (PSI) and photosystem II (PSII)] under various [CO2] and N levels, and thus to clarify if responses of photosynthetic electron transport rates (ETRs) of the two photosystems to elevated [CO2] are altered by N availability. Thus, we examined parameters of the two photosystems in mature leaves of rice plants grown under two [CO2] levels (ambient and 200 µmol mol-1 above ambient) and three N fertilization levels at the Tsukuba free-air CO2 enrichment experimental facility in Japan. Responses of ETR of PSII (ETRII) and ETR of PSI (ETRI) to [CO2] levels differed among N levels. When moderate levels of N were applied (MN), ETRI was higher under elevated [CO2], whereas at high levels of N were applied (HN), both ETRII and ETRI were lower under elevated [CO2] compared with ambient [CO2]. Under HN, the decreases in ETRII and ETRI under elevated [CO2] were due to increases in the non-photochemical quenching of PSII [Y(NPQ)] and the donor side limitation of PSI [Y(ND)], respectively. The relationship between the effective quantum yields of PSI [Y(I)] and PSII [Y(II)] changed under elevated [CO2] and low levels of N (LN). Under both conditions, the ratio of Y(I) to Y(II) was higher than under other conditions. The elevated [CO2] and low N changed the balance of the two photosystems. This change may be important because it can induce the cyclic electron flow around PSI, leading to induction of non-photochemical quenching to avoid photoinhibition.

17.
Front Plant Sci ; 10: 361, 2019.
Article in English | MEDLINE | ID: mdl-31024578

ABSTRACT

Enhancing crop yield response to elevated CO2 concentrations (E-[CO2]) is an important adaptation measure to climate change. A high-yielding indica rice cultivar "Takanari" has recently been identified as a potential candidate for high productivity in E-[CO2] resulting from its large sink and source capacities. To fully utilize these traits, nitrogen should play a major role, but it is unknown how N levels influence the yield response of Takanari to E-[CO2]. We therefore compared grain yield and quality of Takanari with those of Koshihikari, a standard japonica cultivar, in response to Free-Air CO2 enrichment (FACE, +200 µmol mol-1) under three N levels (0, 8, and 12 g m-2) over three seasons. The biomass of both cultivars increased under E-[CO2] at all N levels; however, the harvest index decreased under E-[CO2] in the N-limited treatment for Koshihikari but not for Takanari. The decreased harvest index of Koshihikari resulted from limited enhancement of spikelet number under N-limitation. In contrast, spikelet number increased in E-[CO2] in Takanari even without N application, resulting in significant yield enhancement, averaging 18% over 3 years, whereas Koshihikari exhibited virtually no increase in yield in E-[CO2] under the N-limited condition. Grain appearance quality of Koshihikari was severely reduced by E-[CO2], most notably in N-limited and hot conditions, by a substantial increase in chalky grain, but chalky grain % did not increase in E-[CO2] even without N fertilizer. These results indicated that Takanari could retain its high yield advantage over Koshihikari with limited increase in chalkiness even under limited N conditions and that it could be a useful genetic resource for improving N use efficiency under E-[CO2].

18.
Sci Rep ; 9(1): 20363, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31889125

ABSTRACT

Countermeasures that can mitigate the global warming impact on rice production are needed. The large dehiscence of anther for pollen dispersal is one trait that shows tolerance of seed set to high temperatures under the global warming. The aim of this study is to determine the effect of long anther dehiscence on high temperature tolerance. Seven chromosome segment substitution lines and the seed parent with the different dehiscence lengths were subjected to high daytime temperatures. Elongation of dehiscence formed at the base of anther (BDL) by 100 µm mitigated the occurrence of high temperature induced sterility by 20% and improved tolerance to the high temperature by 0.66 °C. Relationship between the seed set and BDL was well explained by pollination, showing that quantitative information provided in the present experiment is reliable. The information is expected to be used in estimation of global warming impact and making countermeasures for it.


Subject(s)
Flowers , Hot Temperature , Oryza/physiology , Seeds , Stress, Physiological , Models, Theoretical , Pollen , Pollination , Regression Analysis
19.
New Phytol ; 222(2): 726-734, 2019 04.
Article in English | MEDLINE | ID: mdl-30586149

ABSTRACT

Projected global climate change is a potential threat for food security. Both rising atmospheric CO2 concentrations ([CO2 ]) and temperatures have significant impacts on crop productivity, but the combined effects on grain quality are not well understood. We conducted an open-air field experiment to determine the impacts of elevated [CO2 ] (E-[CO2 ], up to 500 µmol mol-1 ) and warming (+2°C) on grain yield, protein and amino acid (AAs, acid digests) in a rice-winter wheat rotation system for 2 yr. E-[CO2 ] increased grain yield by 11.3% for wheat and 5.9% for rice, but decreased grain protein concentration by 14.9% for wheat and by 7.0% for rice, although E-[CO2 ] slightly increased the ratio of essential to nonessential AAs. With a consistent decline in grain yield, warming decreased protein yield, notably in wheat, despite a smaller increase in protein concentration. These results indicate that warming could partially negate the negative impact by E-[CO2 ] on grain protein concentration at the expense of grain yield; this tradeoff could not fully offset the negative effects of climate change on crop production.


Subject(s)
Amino Acids/metabolism , Carbon Dioxide/pharmacology , Grain Proteins/metabolism , Oryza/metabolism , Temperature , Triticum/metabolism , Air , Crops, Agricultural/growth & development , Nitrogen/metabolism , Rain
20.
Plant Cell Physiol ; 59(3): 637-649, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29401364

ABSTRACT

Respiratory CO2 efflux and O2 uptake rates in leaves change in response to the growth CO2 concentration ([CO2]). The degrees of change vary depending on the responses of cellular processes such as nitrogen (N) assimilation and accumulation of organic acids to growth [CO2]. However, the underlying mechanisms remain unclear. Here, we examined the respiratory characteristics of mature leaves of two rice varieties with different yield capacities at different growth stages under ambient and elevated [CO2] conditions at a free-air CO2 enrichment site. We also examined the effect of increased water temperature on leaf respiration. We measured the rates of CO2 efflux and O2 uptake, and determined N contents, primary metabolite contents and maximal activities of respiratory enzymes. The leaf CO2 efflux rates decreased in plants grown at elevated [CO2] in both varieties, and were higher in high-yielding Takanari than in Koshihikari. The leaf O2 uptake rates showed little change with respect to growth [CO2] and variety. The increased water temperature did not significantly affect the CO2 efflux and O2 uptake rates. The N and amino acid contents were significantly higher in Takanari than in Koshihikari. The enhanced N assimilation in Takanari may have consumed more respiratory NADH, leading to higher CO2 efflux rates. In Koshihikari, the ratio of tricarboxylic acid (TCA) cycle intermediates changed and maximal activities of enzymes in the TCA cycle decreased at elevated [CO2]. Therefore, the decreased rates of CO2 efflux in Koshihikari may be due to the decreased activities of TCA cycle enzymes at elevated [CO2].


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/pharmacology , Oryza/physiology , Plant Leaves/physiology , Amino Acids/metabolism , Cell Respiration/drug effects , Citric Acid Cycle/drug effects , Metabolome , Nitrogen/metabolism , Oryza/drug effects , Oryza/growth & development , Oryza/metabolism , Oxygen/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...