Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
JCI Insight ; 5(14)2020 07 23.
Article in English | MEDLINE | ID: mdl-32573495

ABSTRACT

It has been proposed that unmethylated insulin promoter fragments in plasma derive exclusively from ß cells, reflect their recent demise, and can be used to assess ß cell damage in type 1 diabetes. Herein we describe an ultrasensitive assay for detection of a ß cell-specific DNA methylation signature, by simultaneous assessment of 6 DNA methylation markers, that identifies ß cell DNA in mixtures containing as little as 0.03% ß cell DNA (less than 1 ß cell genome equivalent). Based on this assay, plasma from nondiabetic individuals (N = 218, aged 4-78 years) contained on average only 1 ß cell genome equivalent/mL. As expected, cell-free DNA (cfDNA) from ß cells was significantly elevated in islet transplant recipients shortly after transplantation. We also detected ß cell cfDNA in a patient with KATP congenital hyperinsulinism, in which substantial ß cell turnover is thought to occur. Strikingly, in contrast to previous reports, we observed no elevation of ß cell-derived cfDNA in autoantibody-positive subjects at risk for type 1 diabetes (N = 32), individuals with recent-onset type 1 diabetes (<4 months, N = 92), or those with long-standing disease (>4 months, N = 38). We discuss the utility of sensitive ß cell cfDNA analysis and potential explanations for the lack of a ß cell cfDNA signal in type 1 diabetes.


Subject(s)
Cell-Free Nucleic Acids/blood , DNA Methylation/genetics , Diabetes Mellitus, Type 1/blood , Insulin-Secreting Cells/metabolism , Adolescent , Adult , Aged , Biomarkers/blood , Child , Child, Preschool , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Female , Humans , Insulin/genetics , Insulin/metabolism , Insulin-Secreting Cells/pathology , Male , Middle Aged , Young Adult
2.
J Med Genet ; 49(4): 221-6, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22499339

ABSTRACT

BACKGROUND: Osteopetrosis is a life-threatening, rare disorder typically resulting from osteoclast dysfunction and infrequently from failure to commitment to osteoclast lineage. Patients commonly present in infancy with macrocephaly, feeding difficulties, evolving blindness and deafness, and bone marrow failure. In ∼70% of the patients there is a molecularly defined failure to maintain an acid pH at the osteoclast-bone interface (the ruffled border) which is necessary for the bone resorptive activity. METHODS AND RESULTS: In eight patients with infantile osteopetrosis which could be cured by bone marrow transplantation, the study identified by homozygosity mapping in distantly related consanguineous pedigrees a missense mutation in a highly conserved residue in the SNX10 gene. The mutation segregated with the disease in the families and was carried by one of 211 anonymous individuals of the same ethnicity. In the patients' osteoclasts, the mutant SNX10 protein was abnormally abundant and its distribution altered. The patients' osteoclasts were fewer and smaller than control cells, their resorptive capacity was markedly deranged, and the endosomal pathway was perturbed as evidenced by the distribution of internalised dextran. CONCLUSIONS: SNX10 was recently shown to interact with vacuolar type H(+)-ATPase (V-ATPase) which pumps protons at the osteoclast-bone interface. Mutations in TCIRG1, the gene encoding a subunit of the V-ATPase complex, account for the majority of cases of osteopetrosis. It is speculated that SNX10 is responsible for the vesicular sorting of V-ATPase from Golgi or for its targeting to the ruffled border. A mutation in SNX10 may therefore result in 'secondary V-ATPase deficiency' with a failure to acidify the resorption lacuna. Determination of the sequence of the SNX10 gene is warranted in molecularly undefined patients with recessive 'pure' osteopetrosis of infancy.


Subject(s)
Mutation , Osteopetrosis/genetics , Sorting Nexins/genetics , Base Sequence , Consanguinity , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Osteoclasts/metabolism , Osteoclasts/pathology , Osteopetrosis/pathology , Pedigree , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...