Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6882, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898615

ABSTRACT

Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB, Artibeus jamaicensis) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Upon infection with SARS-CoV-2, increased viral RNA and subgenomic RNA was detected, but no infectious virus was released, indicating that JFB organoids support only limited viral replication but not viral reproduction. SARS-CoV-2 replication was associated with significantly increased gene expression of type I interferons and inflammatory cytokines. Interestingly, SARS-CoV-2 also caused enhanced formation and growth of JFB organoids. Proteomics revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells mount successful antiviral interferon responses and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.


Subject(s)
COVID-19 , Chiroptera , Interferon Type I , Viruses , Animals , SARS-CoV-2 , Jamaica , Antiviral Agents , Organoids
2.
Res Sq ; 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36561186

ABSTRACT

Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. JFB organoids were susceptible to SARS-CoV-2 infection, with increased viral RNA and subgenomic RNA detected in cell lysates and supernatants. Gene expression of type I interferons and inflammatory cytokines was induced in response to SARS-CoV-2 but not in response to TLR agonists. Interestingly, SARS-CoV-2 did not lead to cytopathic effects in JFB organoids but caused enhanced organoid growth. Proteomic analyses revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells can mount a successful antiviral interferon response and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.

3.
Gastro Hep Adv ; 1(5): 844-852, 2022.
Article in English | MEDLINE | ID: mdl-35765598

ABSTRACT

Background and Aims: Recent evidence suggests that the gut is an additional target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, whether SARS-CoV-2 spreads via gastrointestinal secretions remains unclear. To determine the prevalence of gastrointestinal SARS-CoV-2 infection in asymptomatic subjects, we analyzed gastrointestinal biopsy and liquid samples from endoscopy patients for the presence of SARS-CoV-2. Methods: We enrolled 100 endoscopic patients without known SARS-CoV-2 infection (cohort A) and 12 patients with a previous COVID-19 diagnosis (cohort B) in a cohort study performed at a regional hospital. Gastrointestinal biopsies and fluids were screened for SARS-CoV-2 by polymerase chain reaction (PCR), immunohistochemistry, and virus isolation assay, and the stability of SARS-CoV-2 in gastrointestinal liquids in vitro was analyzed. Results: SARS-CoV-2 ribonucleic acid was detected by PCR in the colonic tissue of 1/100 patients in cohort A. In cohort B, 3 colonic liquid samples tested positive for SARS-CoV-2 by PCR and viral nucleocapsid protein was detected in the epithelium of the respective biopsy samples. However, no infectious virions were recovered from any samples. In vitro exposure of SARS-CoV-2 to colonic liquid led to a 4-log-fold reduction of infectious SARS-CoV-2 within 1 hour (P ≤ .05). Conclusion: Overall, the persistent detection of SARS-CoV-2 in endoscopy samples after resolution of COVID-19 points to the gut as a long-term reservoir for SARS-CoV-2. Since no infectious virions were recovered and SARS-CoV-2 was rapidly inactivated in the presence of colon liquids, it is unlikely that performing endoscopic procedures is associated with a significant infection risk due to undiagnosed asymptomatic or persistent gastrointestinal SARS-CoV-2 infections.

4.
Immunology ; 161(3): 230-244, 2020 11.
Article in English | MEDLINE | ID: mdl-32737889

ABSTRACT

Retinoic acid (RA) is an active derivative of vitamin A and a key regulator of immune cell function. In dendritic cells (DCs), RA drives the expression of CD103 (integrin αE ), a functionally relevant DC subset marker. In this study, we analyzed the cell type specificity and the molecular mechanisms involved in RA-induced CD103 expression. We show that RA treatment caused a significant up-regulation of CD103 in differentiated monocyte-derived DCs and blood DCs, but not in differentiated monocyte-derived macrophages or T cells. DC treatment with an RA receptor α (RARα) agonist led to an increase in CD103 expression similar to that in RA treatment, whereas RARA gene silencing with small interfering RNA blocked RA-induced up-regulation of CD103, pointing to a major role of RARα in the regulation of CD103 expression. To elucidate RA-induced signaling downstream of RARα, we used Western blot analysis of RA-treated DCs and showed a significant increase of p38 mitogen-activated protein kinase (MAPK) phosphorylation. In addition, DCs cultured with RA and a p38 MAPK inhibitor had a significantly reduced expression of CD103 compared with DCs cultured with RA only, indicating that p38 MAPK is involved in CD103 regulation. In summary, these findings suggest that the RA-induced expression of CD103 is specific to DCs, is mediated primarily through RARα and involves p38 MAPK signaling.


Subject(s)
Antigens, CD/metabolism , Dendritic Cells/immunology , Integrin alpha Chains/metabolism , Retinoic Acid Receptor alpha/metabolism , Tretinoin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Antigens, CD/genetics , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Humans , Integrin alpha Chains/genetics , Phosphorylation , RNA, Small Interfering/genetics , Retinoic Acid Receptor alpha/genetics , Signal Transduction
5.
Cell Mol Gastroenterol Hepatol ; 8(1): 157-171.e3, 2019.
Article in English | MEDLINE | ID: mdl-30878664

ABSTRACT

BACKGROUND & AIMS: Gastric dendritic cells (DCs) control the adaptive response to infection with Helicobacter pylori, a major risk factor for peptic ulcer disease and gastric cancer. We hypothesize that DC interactions with the gastric epithelium position gastric DCs for uptake of luminal H pylori and promote DC responses to epithelial-derived mediators. The aim of this study was to determine whether the gastric epithelium actively recruits DCs using a novel co-culture model of human gastric epithelial spheroids and monocyte-derived DCs. METHODS: Spheroid cultures of primary gastric epithelial cells were infected with H pylori by microinjection. Co-cultures were established by adding human monocyte-derived DCs to the spheroid cultures and were analyzed for DC recruitment and antigen uptake by confocal microscopy. Protein array, gene expression polymerase chain reaction array, and chemotaxis assays were used to identify epithelial-derived chemotactic factors that attract DCs. Data from the co-culture model were confirmed using human gastric tissue samples. RESULTS: Human monocyte-derived DCs co-cultured with gastric spheroids spontaneously migrated to the gastric epithelium, established tight interactions with the epithelial cells, and phagocytosed luminally applied H pylori. DC recruitment was increased upon H pylori infection of the spheroids and involved the activity of multiple chemokines including CXCL1, CXCL16, CXCL17, and CCL20. Enhanced chemokine expression and DC recruitment to the gastric epithelium also was observed in H pylori-infected human gastric tissue samples. CONCLUSIONS: Our results indicate that the gastric epithelium actively recruits DCs for immunosurveillance and pathogen sampling through chemokine-dependent mechanisms, with increased recruitment upon active H pylori infection.


Subject(s)
Chemokines/metabolism , Coculture Techniques/methods , Dendritic Cells/cytology , Gastric Mucosa/cytology , Spheroids, Cellular/cytology , Cells, Cultured , Chemokines/genetics , Dendritic Cells/immunology , Dendritic Cells/microbiology , Epithelial Cells/cytology , Epithelial Cells/immunology , Gastric Mucosa/immunology , Gastric Mucosa/microbiology , Gene Expression Profiling , Gene Expression Regulation , Helicobacter Infections/genetics , Helicobacter Infections/immunology , Helicobacter pylori/immunology , Helicobacter pylori/pathogenicity , Humans , Monocytes/cytology , Monocytes/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...