Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
2.
Sci Rep ; 13(1): 8821, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37258621

ABSTRACT

TAS-115 is an oral multi-receptor tyrosine kinase inhibitor that strongly inhibits kinases implicated in antitumor immunity, such as colony stimulating factor 1 receptor and vascular endothelial growth factor receptor. Because these kinases are associated with the modulation of immune pathways, we investigated the immunomodulatory activity of TAS-115. An in vitro cytokine assay revealed that TAS-115 upregulated interferon γ (IFNγ) and interleukin-2 secretion by T cells, suggesting that TAS-115 activated T cells. Gene expression analysis suggested that TAS-115 promoted M1 macrophage differentiation. In in vivo experiments, although TAS-115 exerted a moderate antitumor effect in the MC38 mouse colorectal cancer model under immunodeficient conditions, this effect was enhanced under immunocompetent conditions. Furthermore, combination of TAS-115 and anti-PD-1 antibody exhibited greater antitumor activity than either treatment alone. Flow cytometry analysis showed the increase in IFNγ- and granzyme B (Gzmb)-secreting tumor-infiltrating T cells by TAS-115 treatment. The combination treatment further increased the percentage of Gzmb+CD8+ T cells and decreased the percentage of macrophages compared with either treatment alone. These results highlight the potential therapeutic effect of TAS-115 in combination with PD-1 blockade, mediated via activation of antitumor immunity by TAS-115.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Animals , Mice , Cell Line, Tumor , Disease Models, Animal , Interferon-gamma/metabolism , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases , Tumor Microenvironment
3.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 79(4): 307-312, 2023 Apr 20.
Article in Japanese | MEDLINE | ID: mdl-36792207

ABSTRACT

PURPOSE: There are various analysis methods for CT perfusion (CTP). Although the advantages of Bayesian estimation algorithms have been newly suggested, comparisons with other analysis methods on clinical data are still limited. In this study, we compared the Bayesian estimation method with the singular value decomposition (SVD) method in the evaluation of patients with acute cerebral infarction and examined its usefulness. METHODS: CTP data from 13 patients with acute stroke were analyzed using the SVD and Bayesian estimation methods implemented in Vitrea. Evaluation of visual clarity of the ischemic area and quantitative values of the healthy side-affected side ratio using the mean values of the left and right region of interest (ROI) on the images were compared using the SVD and Bayesian estimation methods. RESULTS: In visual evaluation, there were significant differences in CBV in four cases, and in CBF, MTT, and TTP in many cases. The healthy side-affected side ratio of the SVD and Bayesian estimation methods were as follows: CBF 1.19, 1.84; CBV 1.09, 1.02; MTT 1.12, 1.79; and TTP 1.48, 1.19. For CBF and MTT, the Bayesian estimation method had a larger ratio of the healthy side to the affected side, and for TTP, the SVD method had a larger ratio of the test side to the affected side. CONCLUSION: We suggest that the Bayesian estimation method is more useful than the SVD method for assessing CBF and MTT in CTP analysis of patients with acute stroke.


Subject(s)
Brain Ischemia , Stroke , Humans , Bayes Theorem , Tomography, X-Ray Computed/methods , Stroke/diagnostic imaging , Brain Ischemia/diagnostic imaging , Cerebrovascular Circulation , Perfusion
4.
ACS Omega ; 7(30): 26591-26600, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936430

ABSTRACT

We explored the mixing effect of 10B isotopes and boron (B) or nitrogen (N) vacancies on the atomic vibrational properties of (10,0) single-wall boron nitride nanotubes (BNNTs). The forced oscillation technique was employed to evaluate the phonon modes for the entire range (0-100%) of 10B isotopes and atomic vacancy densities ranging from 0 to 30%. With increasing isotope densities, we noticed a blue shift of the Raman-active A1 phonon peak, whereas an increased density of mixed or independent B and N vacancies resulted in the emergence of a new low-frequency peak and the annihilation of the A1 peak in the phonon density of states. High-energy optical phonons were localized as a result of both 10B isotopes and the presence of mixing defects. We found an asymmetrical nature of the localization length with increasing 10B isotope content, which corresponds well to the isotope-inherited localization length of carbon nanotubes and monolayer graphene. The localization length falls abruptly with the increase in concentration of both atomic vacancies (B or N) and mixing defects (10B isotope and vacancies). These findings are critical for understanding heat conduction and nanoscopic vibrational investigations such as tip-enhanced Raman spectra in BNNTs, which can map local phonon energies.

5.
Invest New Drugs ; 39(3): 724-735, 2021 06.
Article in English | MEDLINE | ID: mdl-33409897

ABSTRACT

Aurora kinase A, a mitotic kinase that is overexpressed in various cancers, is a promising cancer drug target. Here, we performed preclinical characterization of TAS-119, a novel, orally active, and highly selective inhibitor of Aurora A. TAS-119 showed strong inhibitory effect against Aurora A, with an IC50 value of 1.04 nmol/L. The compound was highly selective for Aurora A compared with 301 other protein kinases, including Aurora kinase B. TAS-119 induced the inhibition of Aurora A and accumulation of mitotic cells in vitro and in vivo. It suppressed the growth of various cancer cell lines harboring MYC family amplification and CTNNB1 mutation in vitro. In a xenograft model of human lung cancer cells harboring MYC amplification and CTNNB1 mutation, TAS-119 showed a strong antitumor activity at well-tolerated doses. TAS-119 induced N-Myc degradation and inhibited downstream transcriptional targets in MYCN-amplified neuroblastoma cell lines. It also demonstrated inhibitory effect against tropomyosin receptor kinase (TRK)A, TRKB, and TRKC, with an IC50 value of 1.46, 1.53, and 1.47 nmol/L, respectively. TAS-119 inhibited TRK-fusion protein activity and exhibited robust growth inhibition of tumor cells via a deregulated TRK pathway in vitro and in vivo. Our study indicates the potential of TAS-119 as an anticancer drug, especially for patients harboring MYC amplification, CTNNB1 mutation, and NTRK fusion.


Subject(s)
Antineoplastic Agents , Aurora Kinase A , Lung Neoplasms , Piperidines , Protein Kinase Inhibitors , Receptor, trkA , Small Cell Lung Carcinoma , Animals , Humans , Male , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/metabolism , beta Catenin/genetics , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice, Nude , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-myc/metabolism , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/metabolism , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Tumor Burden/drug effects , Piperidines/pharmacology , Piperidines/therapeutic use
6.
Phys Chem Chem Phys ; 22(24): 13592-13602, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32515451

ABSTRACT

Because of its impressive electrical, thermal, and mechanical properties, two-dimensional silicon carbide (2D-SiC) has recently gained tremendous attention in the field of nanoelectronics and optoelectronics. Here, we investigated the effects of various types of defects such as bi-, point-, and mixed-vacancies on the thermal conductivity of 2D-SiC using reverse non-equilibrium molecular dynamics simulation. The effects of temperature variation on the thermal conductivity of vacancy-defected 2D-SiC were also studied. A significant reduction of the thermal conductivity was observed when the concentrations of the vacancies were increased. The point vacancy resulted in the thermal conductivity decreasing more quickly as compared to bi vacancy and mixed vacancy defects. Moreover, increasing the temperature of vacancy-defected 2D-SiC further reduced the thermal conductivity due to a strong phonon-vacancy scattering effect. Because of the introduction of vacancy defects in the acoustic phonon density of states (PDOS), a softening behavior in the intensity of the characteristic peaks is perceived, and with increasing temperature, a frequency shrinking is noted in the PDOS curves, both of which contribute to the reduction of the thermal conductivity. Additionally, rapid softening of the phonon transmission spectrum and increase in entropy were obtained for the point vacancy-defected structure, which clearly confirms our findings at different vacancy concentrations as well as for types of vacancies. These findings are very much imperative for realizing heat dissipation in nano- and optoelectronic devices based on 2D-SiC as well as for demonstrating an effective method for modulating 2D-SiC thermal conductivity through defect engineering.

7.
Cancer Sci ; 110(12): 3802-3810, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31583781

ABSTRACT

The ubiquitin proteasome pathway is essential for the proliferation and survival of multiple myeloma (MM) cells. TAS4464, a novel highly potent inhibitor of NEDD8 activating enzyme, selectively inactivates cullin-RING ubiquitin E3 ligases, resulting in accumulation of their substrates. Here, we examined 14 MM cell lines treated with TAS4464. TAS4464 induced growth arrest and cell death in the MM cell lines even in the presence of bone marrow stromal cells. It also induced the accumulation of phospho-inhibitor of κBα and phospho-p100, impaired the activities of nuclear factor κB (NF-κB) transcription factors p65 and RelB, and decreased the expression of NF-κB target genes, suggesting that TAS4464 inhibits both the canonical and non-canonical NF-κB pathways. TAS4464 had similar effects in an in vivo human-MM xenograft mouse model in which it was also observed to have strong antitumor effects. TAS4464 synergistically enhanced the antitumor activities of the standard MM chemotherapies bortezomib, lenalidomide/dexamethasone, daratumumab and elotuzumab. Together, these results suggest that the anti-MM activity of TAS4464 occurs via inhibition of the NF-κB pathways, and that treatment with TAS4464 is a potential approach for treating MM by single and combination therapies.


Subject(s)
Multiple Myeloma/drug therapy , NEDD8 Protein/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrroles/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Humans , Male , Mice , Multiple Myeloma/pathology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
8.
Mol Cancer Res ; 17(11): 2233-2243, 2019 11.
Article in English | MEDLINE | ID: mdl-31467113

ABSTRACT

Despite the worldwide approval of three generations of EGFR tyrosine kinase inhibitors (TKI) for advanced non-small cell lung cancers with EGFR mutations, no TKI with a broad spectrum of activity against all clinically relevant mutations is currently available. In this study, we sought to evaluate a covalent mutation-specific EGFR TKI, TAS6417 (also named CLN-081), with the broadest level of activity against EGFR mutations with a prevalence of ≥1%. Lung cancer and genetically engineered cell lines, as well as murine xenograft models were used to evaluate the efficacy of TAS6417 and other approved/in-development EGFR TKIs (erlotinib, afatinib, osimertinib, and poziotinib). We demonstrate that TAS6417 is a robust inhibitor against the most common EGFR mutations (exon 19 deletions and L858R) and the most potent against cells harboring EGFR-T790M (first/second-generation TKI resistance mutation). In addition, TAS6417 has activity in cells driven by less common EGFR-G719X, L861Q, and S768I mutations. For recalcitrant EGFR exon 20 insertion mutations, selectivity indexes (wild-type EGFR/mutant EGFR ratio of inhibition) favored TAS6417 in comparison with poziotinib and osimertinib, indicating a wider therapeutic window. Taken together, we demonstrate that TAS6417 is a potent EGFR TKI with a broad spectrum of activity and a wider therapeutic window than most approved/in-development generations of EGFR inhibitors. IMPLICATIONS: TAS6417/CLN-081 is a potent EGFR TKI with a wide therapeutic window and may be effective in lung cancer patients with clinically relevant EGFR mutations.


Subject(s)
Antineoplastic Agents/pharmacology , Benzene Derivatives/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Acrylamides/pharmacology , Afatinib/pharmacology , Aniline Compounds/pharmacology , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Exons/genetics , Humans , Indolizines , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Mutation , Quinazolines/pharmacology
9.
Sci Rep ; 9(1): 10380, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31316097

ABSTRACT

Clouds have been recognized to enhance surface melt on the Greenland Ice Sheet (GrIS). However, quantitative estimates of the effects of clouds on the GrIS melt area and ice-sheet-wide surface mass balance are still lacking. Here we assess the effects of clouds with a state-of-the-art regional climate model, conducting a numerical sensitivity test in which adiabatic atmospheric conditions as well as zero cloud water/ice amounts are assumed (i.e., clear-sky conditions), although the precipitation rate is the same as in the control all-sky simulation. By including or excluding clouds, we quantify time-integrated feedbacks for the first time. We find that clouds were responsible for a 3.1%, 0.3%, and 0.7% increase in surface melt extent (of the total GrIS area) in 2012, 2013, and 2014, respectively. During the same periods, clouds reduced solar heating and thus daily runoff by 1.6, 0.8, and 1.0 Gt day-1, respectively: clouds did not enhance surface mass loss. In the ablation areas, the presence of clouds results in a reduction of downward latent heat flux at the snow/ice surface so that much less energy is available for surface melt, which highlights the importance of indirect time-integrated feedbacks of cloud radiative effects.

10.
Nanotechnology ; 30(44): 445707, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31357179

ABSTRACT

Recently, two-dimensional silicon carbide (2D-SiC) has attracted considerable interest due to its exotic electronic and optical properties. Here, we explore the thermal properties of 2D-SiC using reverse non-equilibrium molecular dynamics simulation. At room temperature, a thermal conductivity of ∼313 W mK-1 is obtained for 2D-SiC which is one order higher than that of silicene. Above room temperature, the thermal conductivity deviates the normal 1/T law and shows an anomalous slowly decreasing behavior. To elucidate the variation of thermal conductivity, the phonon modes at different length and temperature are quantified using Fourier transform of the velocity auto-correlation of atoms. The calculated phonon density of states at high temperature shows a shrinking and softening of the peaks, which induces the anomaly in the thermal conductivity. On the other hand, quantum corrections are applied to avoid the freezing effects of phonon modes on the thermal conductivity at low temperature. In addition, the effect of potential on the thermal conductivity calculation is also studied by employing original and optimized Tersoff potentials. These findings provide a means for better understating as well as designing the efficient thermal management of 2D-SiC based electronics and optoelectronics in near future.

11.
Mol Cancer Ther ; 18(7): 1205-1216, 2019 07.
Article in English | MEDLINE | ID: mdl-31092565

ABSTRACT

NEDD8-activating enzyme (NAE) is an essential E1 enzyme of the NEDD8 conjugation (neddylation) pathway, which controls cancer cell growth and survival through activation of cullin-RING ubiquitin ligase complexes (CRL). In this study, we describe the preclinical profile of a novel, highly potent, and selective NAE inhibitor, TAS4464. TAS4464 selectively inhibited NAE relative to the other E1s UAE and SAE. TAS4464 treatment inhibited cullin neddylation and subsequently induced the accumulation of CRL substrates such as CDT1, p27, and phosphorylated IκBα in human cancer cell lines. TAS4464 showed greater inhibitory effects than those of the known NAE inhibitor MLN4924 both in enzyme assay and in cells. Cytotoxicity profiling revealed that TAS4464 is highly potent with widespread antiproliferative activity not only for cancer cell lines, but also patient-derived tumor cells. TAS4464 showed prolonged target inhibition in human tumor xenograft mouse models; weekly or twice a week TAS4464 administration led to prominent antitumor activity in multiple human tumor xenograft mouse models including both hematologic and solid tumors without marked weight loss. As a conclusion, TAS4464 is the most potent and highly selective NAE inhibitor reported to date, showing superior antitumor activity with prolonged target inhibition. It is, therefore, a promising agent for the treatment of a variety of tumors including both hematologic and solid tumors. These results support the clinical evaluation of TAS4464 in hematologic and solid tumors.


Subject(s)
NEDD8 Protein/genetics , Neoplasms/drug therapy , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Animals , Cell Line, Tumor , Humans , Male , Mice , Mice, SCID , Pyrimidines/pharmacology , Pyrroles/pharmacology
12.
Mol Cancer Ther ; 18(5): 920-928, 2019 05.
Article in English | MEDLINE | ID: mdl-30872380

ABSTRACT

TAS-121 is a novel orally active selective covalent inhibitor of the mutant EGFR. We performed preclinical characterization of TAS-121 and compared its efficacy and selectivity for common EGFR mutations (Ex19del and L858R), first- and second- generation EGFR-tyrosine kinase inhibitor (EGFR-TKI) resistance mutation (T790M), and uncommon mutations (G719X and L861Q) with those of other EGFR-TKIs. We also commenced investigation of the clinical benefits of TAS-121. The IC50 for intracellular EGFR phosphorylation was determined by using Jump-In GripTite HEK293 cells transiently transfected with EGFR expression vectors. Mouse xenograft models were used to evaluate the antitumor activity of TAS-121. TAS-121 potently inhibited common activating and resistance EGFR mutations to the same extent as another third-generation EGFR-TKI (osimertinib). In addition, TAS-121 showed equivalent inhibitory activity against some uncommon mutations such as G719X and L861Q. Furthermore, TAS-121 demonstrated greater selectivity for mutant EGFRs versus the wild-type EGFR compared with other EGFR-TKIs. Moreover, TAS-121 displayed antitumor activity in SW48 (EGFR G719S) and NCI-H1975 (EGFR L858R/T790M) xenograft models, and achieved an objective response in patients with NSCLC with EGFR mutations including G719A mutation. In conclusion, TAS-121 is a novel third-generation EGFR-TKI and demonstrates antitumor activities in patients with NSCLC expressing either common or uncommon EGFR mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Quinolines/pharmacology , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Heterografts , Humans , Mice , Mutation/genetics
13.
Mol Cancer Ther ; 18(4): 733-742, 2019 04.
Article in English | MEDLINE | ID: mdl-30787176

ABSTRACT

Activated HER2 is a promising therapeutic target for various cancers. Although several reports have described HER2 inhibitors in development, no covalent-binding inhibitor selective for HER2 has been reported. Here, we report a novel compound TAS0728 that covalently binds to HER2 at C805 and selectively inhibits its kinase activity. Once TAS0728 bound to HER2 kinase, the inhibitory activity was not affected by a high ATP concentration. A kinome-wide biochemical panel and cellular assays established that TAS0728 possesses high specificity for HER2 over wild-type EGFR. Cellular pharmacodynamics assays using MCF10A cells engineered to express various mutated HER2 genes revealed that TAS0728 potently inhibited the phosphorylation of mutated HER2 and wild-type HER2. Furthermore, TAS0728 exhibited robust and sustained inhibition of the phosphorylation of HER2, HER3, and downstream effectors, thereby inducing apoptosis of HER2-amplified breast cancer cells and in tumor tissues of a xenograft model. TAS0728 induced tumor regression in mouse xenograft models bearing HER2 signal-dependent tumors and exhibited a survival benefit without any evident toxicity in a peritoneal dissemination mouse model bearing HER2-driven cancer cells. Taken together, our results demonstrated that TAS0728 may offer a promising therapeutic option with improved efficacy as compared with current HER2 inhibitors for HER2-activated cancers. Assessment of TAS0728 in ongoing clinical trials is awaited (NCT03410927).


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Evaluation, Preclinical/methods , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/chemistry , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mass Spectrometry , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/administration & dosage , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/metabolism , Recombinant Proteins , Signal Transduction/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
14.
Mol Cancer Ther ; 17(8): 1648-1658, 2018 08.
Article in English | MEDLINE | ID: mdl-29748209

ABSTRACT

Activating mutations in the EGFR gene are important targets in cancer therapy because they are key drivers of non-small cell lung cancer (NSCLC). Although almost all common EGFR mutations, such as exon 19 deletions and the L858R point mutation in exon 21, are sensitive to EGFR-tyrosine kinase inhibitor (TKI) therapies, NSCLC driven by EGFR exon 20 insertion mutations is associated with poor clinical outcomes due to dose-limiting toxicity, demonstrating the need for a novel therapy. TAS6417 is a novel EGFR inhibitor that targets EGFR exon 20 insertion mutations while sparing wild-type (WT) EGFR. In cell viability assays using Ba/F3 cells engineered to express human EGFR, TAS6417 inhibited EGFR with various exon 20 insertion mutations more potently than it inhibited the WT. Western blot analysis revealed that TAS6417 inhibited EGFR phosphorylation and downstream molecules in NSCLC cell lines expressing EGFR exon 20 insertions, resulting in caspase activation. These characteristics led to marked tumor regression in vivo in both a genetically engineered model and in a patient-derived xenograft model. Furthermore, TAS6417 provided a survival benefit with good tolerability in a lung orthotopic implantation mouse model. These findings support the clinical evaluation of TAS6417 as an efficacious drug candidate for patients with NSCLC harboring EGFR exon 20 insertion mutations. Mol Cancer Ther; 17(8); 1648-58. ©2018 AACR.


Subject(s)
Exons/genetics , Protein Kinase Inhibitors/therapeutic use , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Mutation , Protein Kinase Inhibitors/pharmacology , Rats
15.
PLoS One ; 11(10): e0164830, 2016.
Article in English | MEDLINE | ID: mdl-27736957

ABSTRACT

Approximately 25-40% of patients with lung cancer show bone metastasis. Bone modifying agents reduce skeletal-related events (SREs), but they do not significantly improve overall survival. Therefore, novel therapeutic approaches are urgently required. In this study, we investigated the anti-tumor effect of TAS-115, a VEGFRs and HGF receptor (MET)-targeted kinase inhibitor, in a tumor-induced bone disease model. A549-Luc-BM1 cells, an osteo-tropic clone of luciferase-transfected A549 human lung adenocarcinoma cells (A549-Luc), produced aggressive bone destruction associated with tumor progression after intra-tibial (IT) implantation into mice. TAS-115 significantly reduced IT tumor growth and bone destruction. Histopathological analysis showed a decrease in tumor vessels after TAS-115 treatment, which might be mediated through VEGFRs inhibition. Furthermore, the number of osteoclasts surrounding the tumor was decreased after TAS-115 treatment. In vitro studies demonstrated that TAS-115 inhibited HGF-, VEGF-, and macrophage-colony stimulating factor (M-CSF)-induced signaling pathways in osteoclasts. Moreover, TAS-115 inhibited Feline McDonough Sarcoma oncogene (FMS) kinase, as well as M-CSF and receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. Thus, VEGFRs/MET/FMS-triple inhibition in osteoclasts might contribute to the potent efficacy of TAS-115. The fact that concomitant dosing of sunitinib (VEGFRs/FMS inhibition) with crizotinib (MET inhibition) exerted comparable inhibitory efficacy for bone destruction to TAS-115 also supports this notion. In conclusion, TAS-115 inhibited tumor growth via VEGFR-kinase blockade, and also suppressed bone destruction possibly through VEGFRs/MET/FMS-kinase inhibition, which resulted in potent efficacy of TAS-115 in an A549-Luc-BM1 bone disease model. Thus, TAS-115 shows promise as a novel therapy for lung cancer patients with bone metastasis.


Subject(s)
Bone Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/metabolism , Quinolines/therapeutic use , Receptors, Vascular Endothelial Growth Factor/metabolism , Thiourea/analogs & derivatives , A549 Cells , Animals , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Crizotinib , Disease Models, Animal , Humans , Indoles/therapeutic use , Indoles/toxicity , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/metabolism , Protein Kinase Inhibitors/toxicity , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrazoles/therapeutic use , Pyrazoles/toxicity , Pyridines/therapeutic use , Pyridines/toxicity , Pyrroles/therapeutic use , Pyrroles/toxicity , Quinolines/toxicity , RANK Ligand/metabolism , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Signal Transduction/drug effects , Sunitinib , Thiourea/therapeutic use , Thiourea/toxicity , Tibia/diagnostic imaging , Tibia/metabolism , Tibia/pathology , Transplantation, Heterologous , X-Ray Microtomography
16.
ACS Med Chem Lett ; 6(9): 1004-9, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26396688

ABSTRACT

Kinesin spindle protein (KSP), known as Hs Eg5, a member of the kinesin-5 family, plays an important role in the formation and maintenance of the bipolar spindle. We previously reported S-trityl-l-cysteine derivatives as selective KSP inhibitors. Here, we report further optimizations using docking modeling in the L5 allosteric binding site, which led to the discovery of several high affinity derivatives with two fused phenyl rings in the trityl group giving low nanomolar range KSP ATPase inhibition. The representative derivatives potently inhibited cell growth of HCT116 cells in correlation with KSP inhibitory activities and significantly suppressed tumor growth in the xenograft model in vivo.

17.
Mol Cancer Ther ; 14(1): 14-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25416789

ABSTRACT

The molecular chaperone HSP90 plays a crucial role in cancer cell growth and survival by stabilizing cancer-related proteins. A number of HSP90 inhibitors have been developed clinically for cancer therapy; however, potential off-target and/or HSP90-related toxicities have proved problematic. The 4-(1H-pyrazolo[3,4-b]pyridine-1-yl)benzamide TAS-116 is a selective inhibitor of cytosolic HSP90α and ß that does not inhibit HSP90 paralogs such as endoplasmic reticulum GRP94 or mitochondrial TRAP1. Oral administration of TAS-116 led to tumor shrinkage in human tumor xenograft mouse models accompanied by depletion of multiple HSP90 clients, demonstrating that the inhibition of HSP90α and ß alone was sufficient to exert antitumor activity in certain tumor models. One of the most notable HSP90-related adverse events universally observed to differing degrees in the clinical setting is visual disturbance. A two-week administration of the isoxazole resorcinol NVP-AUY922, an HSP90 inhibitor, caused marked degeneration and disarrangement of the outer nuclear layer of the retina and induced photoreceptor cell death in rats. In contrast, TAS-116 did not produce detectable photoreceptor injury in rats, probably due to its lower distribution in retinal tissue. Importantly, in a rat model, the antitumor activity of TAS-116 was accompanied by a higher distribution of the compound in subcutaneously xenografted NCI-H1975 non-small cell lung carcinoma tumors than in retina. Moreover, TAS-116 showed activity against orthotopically transplanted NCI-H1975 lung tumors. Together, these data suggest that TAS-116 has a potential to maximize antitumor activity while minimizing adverse effects such as visual disturbances that are observed with other compounds of this class.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Benzamides/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lung Neoplasms/drug therapy , Pyrazoles/pharmacology , Retina/pathology , Animals , Antineoplastic Agents/adverse effects , Benzamides/adverse effects , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Humans , Lung Neoplasms/metabolism , Male , Mice , Photoreceptor Cells/drug effects , Pyrazoles/adverse effects , Rats , Xenograft Model Antitumor Assays
18.
Mol Cancer Ther ; 12(12): 2685-96, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24140932

ABSTRACT

VEGF receptor (VEGFR) signaling plays a key role in tumor angiogenesis. Although some VEGFR signal-targeted drugs have been approved for clinical use, their utility is limited by associated toxicities or resistance to such therapy. To overcome these limitations, we developed TAS-115, a novel VEGFR and hepatocyte growth factor receptor (MET)-targeted kinase inhibitor with an improved safety profile. TAS-115 inhibited the kinase activity of both VEGFR2 and MET and their signal-dependent cell growth as strongly as other known VEGFR or MET inhibitors. On the other hand, kinase selectivity of TAS-115 was more specific than that of sunitinib and TAS-115 produced relatively weak inhibition of growth (GI50 > 10 µmol/L) in VEGFR signal- or MET signal-independent cells. Furthermore, TAS-115 induced less damage in various normal cells than did other VEGFR inhibitors. These data suggest that TAS-115 is extremely selective and specific, at least in vitro. In in vivo studies, TAS-115 completely suppressed the progression of MET-inactivated tumor by blocking angiogenesis without toxicity when given every day for 6 weeks, even at a serum-saturating dose of TAS-115. The marked selectivity of TAS-115 for kinases and targeted cells was associated with improved tolerability and contributed to the ability to sustain treatment without dose reduction or a washout period. Furthermore, TAS-115 induced marked tumor shrinkage and prolonged survival in MET-amplified human cancer-bearing mice. These data suggest that TAS-115 is a unique VEGFR/MET-targeted inhibitor with improved antitumor efficacy and decreased toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Quinolines/pharmacology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Thiourea/analogs & derivatives , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Enzyme Activation/drug effects , Humans , Mice , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/toxicity , Quinolines/administration & dosage , Thiourea/administration & dosage , Thiourea/pharmacology , Tumor Burden/drug effects , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Xenograft Model Antitumor Assays
19.
J Med Chem ; 55(14): 6427-37, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22715973

ABSTRACT

Deoxyuridine triphosphatase (dUTPase) has emerged as a potential target for drug development as a 5-fluorouracil-based combination chemotherapy. We describe the design and synthesis of a novel class of human dUTPase inhibitors, 1,2,3-triazole-containing uracil derivatives. Compound 45a, which possesses 1,5-disubstituted 1,2,3-triazole moiety that mimics the amide bond of tert-amide-containing inhibitor 6b locked in a cis conformation showed potent inhibitory activity, and its structure-activity relationship studies led us to the discovery of highly potent inhibitors 48c and 50c (IC(50) = ~0.029 µM). These derivatives dramatically enhanced the growth inhibition activity of 5-fluoro-2'-deoxyuridine against HeLa S3 cells in vitro (EC(50) = ~0.05 µM). In addition, compound 50c exhibited a markedly improved pharmacokinetic profile as a result of the introduction of a benzylic hydroxy group and significantly enhanced the antitumor activity of 5-fluorouracil against human breast cancer MX-1 xenograft model in mice. These data indicate that 50c is a promising candidate for combination cancer chemotherapies with TS inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Pyrophosphatases/antagonists & inhibitors , Triazoles/pharmacology , Triazoles/pharmacokinetics , Uracil/chemistry , Amides/chemistry , Animals , Cell Proliferation/drug effects , Drug Design , Drug Stability , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , HeLa Cells , Humans , Inhibitory Concentration 50 , Male , Mice , Thymidylate Synthase/antagonists & inhibitors , Triazoles/chemistry , Triazoles/metabolism
20.
J Med Chem ; 55(11): 5483-96, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22607122

ABSTRACT

Human deoxyuridine triphosphatase (dUTPase) inhibition is a promising approach to enhance the efficacy of thymidylate synthase (TS) inhibitor based chemotherapy. In this study, we describe the discovery of a novel class of human dUTPase inhibitors based on the conformation restriction strategy. On the basis of the X-ray cocrystal structure of dUTPase and its inhibitor compound 7, we designed and synthesized two conformation restricted analogues, i.e., compounds 8 and 9. These compounds exhibited increased in vitro potency compared with the parent compound 7. Further structure-activity relationship (SAR) studies identified a compound 43 with the highest in vitro potency (IC(50) = 39 nM, EC(50) = 66 nM). Furthermore, compound 43 had a favorable oral PK profile and exhibited potent antitumor activity in combination with 5-fluorouracil (5-FU) in the MX-1 breast cancer xenograft model. These results suggested that a dUTPase inhibitor may have potential for clinical usage.


Subject(s)
Antineoplastic Agents/chemical synthesis , Pyrophosphatases/antagonists & inhibitors , Sulfonamides/chemical synthesis , Uracil/analogs & derivatives , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Drug Synergism , Fluorouracil/pharmacology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Molecular , Molecular Conformation , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Transplantation, Heterologous , Uracil/chemical synthesis , Uracil/pharmacokinetics , Uracil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL