Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Nihon Yakurigaku Zasshi ; 159(4): 219-224, 2024.
Article in Japanese | MEDLINE | ID: mdl-38945904

ABSTRACT

Major depressive disorder (MDD) is a psychiatric disorder that affects more than 300 million people worldwide and has a serious impact on society. Conventional antidepressants targeting monoamines in the brain based on the monoamine hypothesis are known to take a prolonged time to be effective or less effective in 30% of MDD patients. Hence, there is a need to develop antidepressants that are effective against treatment-resistant depression and have a new mechanism different from the monoamine hypothesis. An increasing number of research groups including us have been establishing that pituitary adenylate cyclase-activating polypeptide (PACAP) and one of its receptors, PAC1 receptor, are closely related to the etiology of stress-related diseases such as MDD. Therefore, it is strongly suggested that the PAC1 receptor is a promising target in the treatment of psychiatric disorders. We developed a novel, non-peptidic, small-molecule, high-affinity PAC1 receptor antagonists and conducted behavioral pharmacology experiments in mice to characterize a novel PAC1 receptor antagonist as a new option for MDD therapy. The results show that our novel PAC1 receptor antagonist has the potential to be a new antidepressant with a high safety profile. In this review, we would like to present the background of developing our novel PAC1 receptor antagonist and its effects on mouse models of acute stress.


Subject(s)
Antidepressive Agents , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Animals , Humans , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Drug Development , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Molecular Targeted Therapy
2.
Biochem Biophys Res Commun ; 726: 150251, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38936249

ABSTRACT

Social behavior, defined as any mode of communication between conspecifics is regulated by a widespread network comprising multiple brain structures. The anterior cingulate cortex (ACC) serves as a hub region interconnected with several brain regions involved in social behavior. Because the ACC coordinates various behaviors, it is important to focus on a subpopulation of neurons that are potentially involved in social behavior to clarify the precise role of the ACC in social behavior. In this study, we aimed to analyze the roles of a social stimulus-responsive subpopulation of neurons in the ACC in social behavior in mice. We demonstrated that a subpopulation of neurons in the ACC was activated by social stimuli and that silencing the social stimulus-responsive subpopulation of neurons in the ACC significantly impaired social interaction without affecting locomotor activity or anxiety-like behavior. Our current findings highlight the importance of the social stimulus-responsive subpopulation of neurons in the ACC for social behavior and the association between ACC dysfunction and impaired social behavior, which sheds light on therapeutic interventions for psychiatric conditions.


Subject(s)
Gyrus Cinguli , Mice, Inbred C57BL , Neurons , Social Behavior , Animals , Gyrus Cinguli/physiology , Neurons/physiology , Neurons/metabolism , Mice , Male , Anxiety/physiopathology , Behavior, Animal/physiology
3.
iScience ; 27(6): 109878, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799556

ABSTRACT

Adeno-associated virus (AAV) vectors are potential tools for cell-type-selective gene delivery to the central nervous system. Although cell-type-specific enhancers and promoters have been identified for AAV systems, there is limited information regarding the effects of AAV genomic components on the selectivity and efficiency of gene expression. Here, we offer an alternative strategy to provide specific and efficient gene delivery to a targeted neuronal population by optimizing recombinant AAV genomic components, named TAREGET (TransActivator-Regulated Enhanced Gene Expression within Targeted neuronal populations). We established this strategy in oxytocinergic neurons and showed that the TAREGET enabled sufficient gene expression to label long-projecting axons in wild-type mice. Its application to other cell types, including serotonergic and dopaminergic neurons, was also demonstrated. These results demonstrate that optimization of AAV expression cassettes can improve the specificity and efficiency of cell-type-specific gene expression and that TAREGET can renew previously established cell-type-specific promoters with improved performance.

4.
Mol Psychiatry ; 29(5): 1406-1416, 2024 May.
Article in English | MEDLINE | ID: mdl-38388704

ABSTRACT

Chronic social isolation increases the risk of mental health problems, including cognitive impairments and depression. While subanesthetic ketamine is considered effective for cognitive impairments in patients with depression, the neural mechanisms underlying its effects are not well understood. Here we identified unique activation of the anterior insular cortex (aIC) as a characteristic feature in brain-wide regions of mice reared in social isolation and treated with (R)-ketamine, a ketamine enantiomer. Using fiber photometry recording on freely moving mice, we found that social isolation attenuates aIC neuronal activation upon social contact and that (R)-ketamine, but not (S)-ketamine, is able to counteracts this reduction. (R)-ketamine facilitated social cognition in social isolation-reared mice during the social memory test. aIC inactivation offset the effect of (R)-ketamine on social memory. Our results suggest that (R)-ketamine has promising potential as an effective intervention for social cognitive deficits by restoring aIC function.


Subject(s)
Cognitive Dysfunction , Insular Cortex , Ketamine , Social Isolation , Animals , Ketamine/pharmacology , Mice , Male , Insular Cortex/drug effects , Cognitive Dysfunction/drug therapy , Mice, Inbred C57BL , Memory/drug effects , Cognition/drug effects , Social Behavior , Cerebral Cortex/drug effects , Neurons/drug effects , Cognition Disorders/drug therapy
5.
J Pharmacol Sci ; 154(3): 139-147, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395514

ABSTRACT

Vasoactive intestinal peptide (VIP) receptor 2 (VIPR2) is a G protein-coupled receptor that binds to Gαs, Gαi, and Gαq proteins to regulate various downstream signaling molecules, such as protein kinase A (PKA), phosphatidylinositol 3-kinase (PI3K), and phospholipase C. In this study, we examined the role of VIPR2 in cell cycle progression. KS-133, a newly developed VIPR2-selective antagonist peptide, attenuated VIP-induced cell proliferation in MCF-7 cells. The percentage of cells in the S-M phase was decreased in MCF-7 cells treated with KS-133. KS-133 in the presence of VIP decreased the phosphorylation of extracellular signal-regulated kinase (ERK), AKT, and glycogen synthase kinase-3ß (GSK3ß), resulting in a decrease in cyclin D1 levels. In MCF-7 cells stably-expressing VIPR2, KS-133 decreased PI3K activity and cAMP levels. Treatment with the ERK-specific kinase (MEK) inhibitor U0126 and the class I PI3K inhibitor ZSTK474 decreased the percentage of cells in the S phase. KS-133 reduced the percentage of cells in the S phase more than treatment with U0126 or ZSTK474 alone and did not affect the effect of the mixture of these inhibitors. Our findings suggest that VIPR2 signaling regulates cyclin D1 levels through the cAMP/PKA/ERK and PI3K/AKT/GSK3ß pathways, and mediates the G1/S transition to control cell proliferation.


Subject(s)
Butadienes , Cyclin D1 , Nitriles , Peptides, Cyclic , Proto-Oncogene Proteins c-akt , Humans , Cyclin D1/genetics , Proto-Oncogene Proteins c-akt/metabolism , MCF-7 Cells , Receptors, Vasoactive Intestinal Peptide, Type II , Phosphatidylinositol 3-Kinases/metabolism , Glycogen Synthase Kinase 3 beta , Cell Division , Extracellular Signal-Regulated MAP Kinases/metabolism , Cell Proliferation , Phosphatidylinositol 3-Kinase
6.
Biol Pharm Bull ; 47(2): 478-485, 2024.
Article in English | MEDLINE | ID: mdl-38382927

ABSTRACT

The medial prefrontal cortex (mPFC) is associated with various behavioral controls via diverse projections to cortical and subcortical areas of the brain. Dysfunctions and modulations of this circuitry are related to the pathophysiology of schizophrenia and its pharmacotherapy, respectively. Clozapine is an atypical antipsychotic drug used for treatment-resistant schizophrenia and is known to modulate neuronal activity in the mPFC. However, it remains unclear which prefrontal cortical projections are activated by clozapine among the various projection targets. To identify the anatomical characteristics of neurons activated by clozapine at the mesoscale level, we investigated the brain-wide projection patterns of neurons with clozapine-induced c-Fos expression in the mPFC. Using a whole-brain imaging and virus-mediated genetic tagging of activated neurons, we found that clozapine-responsive neurons in the mPFC had a wide range of projections to the mesolimbic, amygdala and thalamic areas, especially the mediodorsal thalamus. These results may provide key insights into the neuronal basis of the therapeutic action of clozapine.


Subject(s)
Antipsychotic Agents , Clozapine , Rats , Animals , Clozapine/pharmacology , Rats, Sprague-Dawley , Antipsychotic Agents/pharmacology , Prefrontal Cortex , Neurons
7.
J Pharmacol Sci ; 154(2): 72-76, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38246730

ABSTRACT

Alternatives to ketamine without psychotomimetic properties for the treatment of depression have attracted much attention. Here, we examined the anti-despair and anti-anhedonia effects of the ketamine metabolites (S)-norketamine ((S)-NK), (R)-NK, (2S,6S)-hydroxynorketamine, and (2R,6R)-hydroxynorketamine in a mouse model of depression induced by social isolation. All ketamine metabolites examined had acute (30 min after administration) anti-despair-like effects in the forced swim test, but only (S)-NK showed a long-lasting (1 week) effect. Additionally, only (S)-NK improved reduced motivation both 30 min and 24 h after injection in the female encounter test. These results suggest that (S)-NK has potent and long-lasting antidepressant-like effects.


Subject(s)
Ketamine , Female , Animals , Mice , Ketamine/pharmacology , Disease Models, Animal , Social Isolation
8.
Nat Commun ; 14(1): 5996, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803014

ABSTRACT

Associative learning is crucial for adapting to environmental changes. Interactions among neuronal populations involving the dorso-medial prefrontal cortex (dmPFC) are proposed to regulate associative learning, but how these neuronal populations store and process information about the association remains unclear. Here we developed a pipeline for longitudinal two-photon imaging and computational dissection of neural population activities in male mouse dmPFC during fear-conditioning procedures, enabling us to detect learning-dependent changes in the dmPFC network topology. Using regularized regression methods and graphical modeling, we found that fear conditioning drove dmPFC reorganization to generate a neuronal ensemble encoding conditioned responses (CR) characterized by enhanced internal coactivity, functional connectivity, and association with conditioned stimuli (CS). Importantly, neurons strongly responding to unconditioned stimuli during conditioning subsequently became hubs of this novel associative network for the CS-to-CR transformation. Altogether, we demonstrate learning-dependent dynamic modulation of population coding structured on the activity-dependent formation of the hub network within the dmPFC.


Subject(s)
Conditioning, Classical , Learning , Male , Mice , Animals , Conditioning, Classical/physiology , Learning/physiology , Prefrontal Cortex/physiology , Fear/physiology , Neurons/physiology , Association Learning
9.
J Pharmacol Sci ; 153(3): 175-182, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37770159

ABSTRACT

We previously found that pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient (PACAP-/-) mice exhibit dendritic spine morphology impairment and neurodevelopmental disorder (NDD)-like behaviors such as hyperactivity, increased novelty-seeking behavior, and deficient pre-pulse inhibition. Recent studies have indicated that rodent models of NDDs (e.g., attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder) show abnormalities in the axon initial segment (AIS). Here, we revealed that PACAP-/- mice exhibited a longer AIS length in layer 2/3 pyramidal neurons of the primary somatosensory barrel field compared with wild-type control mice. Further, we previously showed that a single injection of atomoxetine, an ADHD drug, improved hyperactivity in PACAP-/- mice. In this study, we found that repeated treatments of atomoxetine significantly improved AIS abnormality along with hyperactivity in PACAP-/- mice. These results suggest that AIS abnormalities are associated with NDDs-like behaviors in PACAP-/- mice. Thus, improvement in AIS abnormalities will be a novel drug therapy for NDDs.

10.
Microrna ; 12(3): 221-226, 2023.
Article in English | MEDLINE | ID: mdl-37106511

ABSTRACT

BACKGROUND: Accumulating evidence has implicated the role of neuroinflammation in the pathology of autism spectrum disorder (ASD), a neurodevelopmental disorder. OBJECTIVES: To investigate the expression of prostaglandin EP3 (EP3) receptor mRNA in the brain of ASD mouse model. METHODS: Pregnant mice were injected with valproic acid (VPA) 500 mg/kg intraperitoneally at 12.5 d gestation. The offspring were tested at the age of 5-6 weeks old for their social interaction behavior. Each mouse was assessed for prostaglandin EP3 receptor expression in the prefrontal cortical, hippocampal and cerebellar areas one day after the behavioral test. RESULTS: Compared to the naive, mice born to dams treated with VPA demonstrated a significantly shorter duration of sniffing behavior, a model of social interaction. Results further showed that the expression of EP3 receptor mRNA was significantly lower in all three brain regions of the mice born to VPA-treated dams. CONCLUSION: The present study provides further evidence of the relevance of the arachidonic acid cascade as an essential part of neuroinflammation in the pathology of ASD.


Subject(s)
Autism Spectrum Disorder , MicroRNAs , Pregnancy , Female , Mice , Animals , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , RNA, Messenger/genetics , Neuroinflammatory Diseases , MicroRNAs/genetics , Valproic Acid , Brain , Prostaglandins , Disease Models, Animal
11.
Biomed Opt Express ; 14(3): 1015-1026, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36950233

ABSTRACT

Raman microscopy is an emerging tool for molecular imaging and analysis of living samples. Use of Raman microscopy in life sciences is, however, still limited because of its slow measurement speed for spectral imaging and analysis. We developed a multiline-illumination Raman microscope to achieve ultrafast Raman spectral imaging. A spectrophotometer equipped with a periodic array of confocal slits detects Raman spectra from a sample irradiated by multiple line illuminations. A comb-like Raman hyperspectral image is formed on a two-dimensional detector in the spectrophotometer, and a hyperspectral Raman image is acquired by scanning the sample with multiline illumination array. By irradiating a sample with 21 simultaneous illumination lines, we achieved high-throughput Raman hyperspectral imaging of mouse brain tissue, acquiring 1108800 spectra in 11.4 min. We also measured mouse kidney and liver tissue as well as conducted label-free live-cell molecular imaging. The ultrafast Raman hyperspectral imaging enabled by the presented technique will expand the possible applications of Raman microscopy in biological and medical fields.

12.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835411

ABSTRACT

Heat stroke is a life-threatening illness caused by exposure to high ambient temperatures and relative humidity. The incidence of heat stroke is expected to increase due to climate change. Although pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in thermoregulation, the role of PACAP on heat stress remains unclear. PACAP knockout (KO) and wild-type ICR mice were subjected to heat exposure at an ambient temperature of 36 °C and relative humidity of 99% for 30-150 min. After heat exposure, the PACAP KO mice had a greater survival rate and maintained a lower body temperature than the wild-type mice. Moreover, the gene expression and immunoreaction of c-Fos in the ventromedially preoptic area of the hypothalamus, which is known to harbor temperature-sensitive neurons, were significantly lower in PACAP KO mice than those in wild-type mice. In addition, differences were observed in the brown adipose tissue, the primary site of heat production, between PACAP KO and wild-type mice. These results suggest that PACAP KO mice are resistant to heat exposure. The heat production mechanism differs between PACAP KO and wild-type mice.


Subject(s)
Heat Stroke , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Mice , Heat Stroke/genetics , Heat Stroke/metabolism , Hypothalamus/metabolism , Mice, Inbred ICR , Mice, Knockout , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology
13.
Cell Rep ; 42(3): 112149, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36821440

ABSTRACT

Major depressive disorder (MDD) is among the most common mental illnesses. Serotonergic (5-HT) neurons are central to the pathophysiology and treatment of MDD. Repeatedly recalling positive episodes is effective for MDD. Stimulating 5-HT neurons of the dorsal raphe nucleus (DRN) or neuronal ensembles in the dorsal dentate gyrus (dDG) associated with positive memories reverses the stress-induced behavioral abnormalities. Despite this phenotypic similarity, their causal relationship is unclear. This study revealed that the DRN 5-HT neurons activate dDG neurons; surprisingly, this activation was specifically observed in positive memory ensembles rather than neutral or negative ensembles. Furthermore, we revealed that dopaminergic signaling induced by activation of DRN 5-HT neurons projecting to the ventral tegmental area mediates an increase in active coping behavior and positive dDG ensemble reactivation. Our study identifies a role of DRN 5-HT neurons as specific reactivators of positive memories and provides insights into how serotonin elicits antidepressive effects.


Subject(s)
Depressive Disorder, Major , Dorsal Raphe Nucleus , Humans , Serotonergic Neurons , Serotonin/pharmacology , Dentate Gyrus
14.
Exp Neurol ; 362: 114339, 2023 04.
Article in English | MEDLINE | ID: mdl-36717013

ABSTRACT

Large scale studies in populations of European and Han Chinese ancestry found a series of rare gain-of-function microduplications in VIPR2, encoding VPAC2, a receptor that binds vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide with high affinity, that were associated with an up to 13-fold increased risk for schizophrenia. To address how VPAC2 receptor overactivity might affect brain development, we used a well-characterized Nestin-Cre mouse strain and a knock-in approach to overexpress human VPAC2 in the central nervous system. Mice that overexpressed VPAC2 were found to exhibit a significant reduction in brain weight. Magnetic resonance imaging analysis confirmed a decrease in brain size, a specific reduction in the hippocampus grey matter volume and a paradoxical increase in whole-brain white matter volume. Sex-specific changes in behavior such as impaired prepulse inhibition and contextual fear memory were observed in VPAC2 overexpressing mice. The data indicate that the VPAC2 receptor may play a critical role in brain morphogenesis and suggest that overactive VPAC2 signaling during development plays a mechanistic role in some forms of schizophrenia.


Subject(s)
Receptors, Vasoactive Intestinal Peptide, Type II , White Matter , Male , Humans , Female , Mice , Animals , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , White Matter/metabolism , Vasoactive Intestinal Peptide/chemistry , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Prepulse Inhibition
15.
Peptides ; 161: 170940, 2023 03.
Article in English | MEDLINE | ID: mdl-36603770

ABSTRACT

Vasoactive intestinal peptide (VIP) receptor 2 (VIPR2) is a class B G protein-coupled receptor with the neuropeptide VIP as a ligand. Increased VIPR2 mRNA expression and/or VIPR2 gene copy number has been documented in several cancers including breast carcinoma. However, the pathophysiological role of increased VIPR2 in the proliferation of breast cancer cells remains largely unknown. In this study, we found that VIPR2 overexpression in MCF-7 and MDA-MB-231 cells, human breast cancer cell lines, promoted cell proliferation. Increased VIPR2 also exacerbated intraperitoneal proliferation of breast cancer MDA-MB-231 cells in a tumor nude mouse model in vivo. Treatment with KS-133, a VIPR2-selective antagonist peptide, significantly inhibited VIP-induced cell proliferation in VIPR2-overexpressing MCF-7 and MDA-MB-231 cells. Overexpressed VIPR2 caused increases in the levels of cAMP and phosphorylated extracellular signal-regulated kinase (ERK), which involves a VIPR2 signaling pathway through Gs protein. Additionally, phosphorylation of vasodilator-stimulated phosphoprotein (Ser157) and cAMP response element binding protein (Ser133) in VIPR2-overexpressing MCF-7 cells was greater than that in control cells, suggesting the increased PKA activity. Moreover, an inhibitor of mitogen-activated protein kinase kinase, U0126, attenuated tumor proliferation in exogenous VIPR2-expressing MCF-7 and MDA-MB-231 cells at the same level as observed in EGFP-expressing cells treated with U0126. Together, these findings suggest that VIPR2 controls breast tumor growth by regulating the cAMP/PKA/ERK signaling pathway, and the excessive expression of VIPR2 may lead to an exacerbation of breast carcinoma.


Subject(s)
Breast Neoplasms , Extracellular Signal-Regulated MAP Kinases , Receptors, Vasoactive Intestinal Peptide, Type II , Animals , Female , Humans , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Signal Transduction , Vasoactive Intestinal Peptide/genetics , Vasoactive Intestinal Peptide/metabolism
16.
Mol Neurobiol ; 60(1): 171-182, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36251233

ABSTRACT

We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) in the ventromedial hypothalamus (VMH) enhances feeding during the dark cycle and after fasting, and inhibits feeding during the light cycle. On the other hand, galanin is highly expressed in the hypothalamus and has been reported to be involved in feeding regulation. In this study, we investigated the involvement of the VMH-PACAP to the dorsomedial hypothalamus (DMH)-galanin signaling in the regulation of feeding. Galanin expression in the hypothalamus was significantly increased with fasting, but this increment was canceled in PACAP-knockout (KO) mice. Furthermore, overexpression of PACAP in the VMH increased the expression of galanin, while knockdown (KD) of PACAP in the VMH decreased the expression of galanin, indicating that the expression of galanin in the hypothalamus might be regulated by PACAP in the VMH. Therefore, we expressed the synaptophysin-EGFP fusion protein (SypEGFP) in PACAP neurons in the VMH and visualized the neural projection to the hypothalamic region where galanin was highly expressed. A strong synaptophysin-EGFP signal was observed in the DMH, indicating that PACAP-expressing cells of the VMH projected to the DMH. Furthermore, galanin immunostaining in the DMH showed that galanin expression was weak in PACAP-KO mice. When galanin in the DMH was knocked down, food intake during the dark cycle and after fasting was decreased, and food intake during the light cycle was increased, as in PACAP-KO mice. These results indicated that galanin in the DMH may regulate the feeding downstream of PACAP in the VMH.


Subject(s)
Hypothalamus , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Mice , Appetite Regulation , Galanin/metabolism , Hypothalamus/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Synaptophysin/metabolism
17.
J Control Release ; 354: 35-44, 2023 02.
Article in English | MEDLINE | ID: mdl-36586673

ABSTRACT

PEGylated liposomes (PEG-liposomes) are a promising drug delivery vehicle for tumor targeting because of their efficient tumor disposition profiles via the enhanced permeability and retention (EPR) effect. However, tumor targeting of PEG-liposomes, particularly their delivery inside the tumors, is often disturbed by physical barriers in the tumor, including tumor cells themselves, extracellular matrices, and interstitial pressures. In this study, B16 melanoma tumor-bearing mice were injected intravenously with oncolytic reovirus before administration of PEG-liposomes to enhance PEG-liposomes' tumor disposition. Three days after reovirus administration, significant expression of reovirus sigma 3 protein, elevation of apoptosis-related gene expression, and activation of caspase 3 in the tumors were found. Apoptotic cells were found inside the tumors. These data indicated that reovirus efficiently replicated in the tumors and induced apoptosis of tumor cells. The tumor disposition levels of PEG-liposomes were approximately doubled by reovirus pre-administration, compared with a PBS-pretreated group. PEG-liposomes were widely distributed in the tumors of reovirus-pretreated mice, whereas in the PBS-pretreated group, PEG-liposomes were found mainly around or inside the blood vessels in the tumors. Pre-treatment with reovirus also improved the tumor accumulation of PEG-liposomes in human pancreatic BxPC-3 tumors. 3D imaging analysis of whole BxPC-3 tumors demonstrated that pretreatment with reovirus led to the enhancement of PEG-liposome accumulation inside the tumors. Combination treatment with reovirus and paclitaxel-loaded PEG-liposomes (PTX-PEG-liposomes) significantly suppressed B16 tumor growth. These results provide important information for clinical use of combination therapy of reovirus and nanoparticle-based drug delivery system (DDS).


Subject(s)
Liposomes , Melanoma, Experimental , Mice , Humans , Animals , Liposomes/therapeutic use , Paclitaxel/therapeutic use , Melanoma, Experimental/drug therapy , Combined Modality Therapy , Cell Line, Tumor , Polyethylene Glycols/therapeutic use
18.
Neuropharmacology ; 223: 109313, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36328065

ABSTRACT

While the molecular target of (R,S)-ketamine (ketamine) is thought to be the NMDA receptor, subanesthetic doses of ketamine have been known to modulate monoaminergic neurotransmission in the central nervous system. Although the involvement of the serotonergic system in the antidepressant effects of ketamine has been reported in most studies of this topic, some recent studies have reported that the dopaminergic system plays a key role in the effects of ketamine. Additionally, several lines of evidence suggest that the antidepressant-like effects of (R)-ketamine might be independent of the monoaminergic system. Ketamine metabolites also differ considerably in their ability to regulate monoamine neurotransmitters relative to (S)-ketamine and (R)-ketamine, while (2R,6R)-hydroxynorketamine might share common serotonergic signaling mechanisms with ketamine. In the current review, we summarize the effects of ketamine and its metabolites on monoamine neurotransmission in the brain and discuss the potential roles of the monoaminergic system in the mechanism of action of ketamine.


Subject(s)
Ketamine , Antidepressive Agents/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission , Dopamine/metabolism
19.
Nat Commun ; 13(1): 7913, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36585411

ABSTRACT

Feeding behavior is adaptively regulated by external and internal environment, such that feeding is suppressed when animals experience pain, sickness, or fear. While the lateral parabrachial nucleus (lPB) plays key roles in nociception and stress, neuronal pathways involved in feeding suppression induced by fear are not fully explored. Here, we investigate the parasubthalamic nucleus (PSTN), located in the lateral hypothalamus and critically involved in feeding behaviors, as a target of lPB projection neurons. Optogenetic activation of lPB-PSTN terminals in male mice promote avoidance behaviors, aversive learning, and suppressed feeding. Inactivation of the PSTN and lPB-PSTN pathway reduces fear-induced feeding suppression. Activation of PSTN neurons expressing pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide enriched in the PSTN, is sufficient for inducing avoidance behaviors and feeding suppression. Blockade of PACAP receptors impaires aversive learning induced by lPB-PSTN photomanipulation. These findings indicate that lPB-PSTN pathway plays a pivotal role in fear-induced feeding suppression.


Subject(s)
Parabrachial Nucleus , Mice , Male , Animals , Parabrachial Nucleus/metabolism , Fear , Pain , Hypothalamic Area, Lateral/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
20.
Mol Brain ; 15(1): 100, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539776

ABSTRACT

We recently reported that a neuronal population in the claustrum (CLA) identified under exposure to psychological stressors plays a key role in stress response processing. Upon stress exposure, the main inputs to the CLA come from the basolateral amygdala (BLA); however, the upstream brain regions that potentially regulate both the CLA and BLA during stressful experiences remain unclear. Here by combining activity-dependent viral retrograde labeling with whole brain imaging, we analyzed neurons projecting to the CLA and BLA activated by exposure to social defeat stress. The labeled CLA projecting neurons were mostly ipsilateral, excluding the prefrontal cortices, which had a distinctly labeled population in the contralateral hemisphere. Similarly, the labeled BLA projecting neurons were predominantly ipsilateral, aside from the BLA in the opposite hemisphere, which also had a notably labeled population. Moreover, we found co-labeled double-projecting single neurons in multiple brain regions such as the ipsilateral ectorhinal/perirhinal cortex, entorhinal cortex, and the contralateral BLA. These results suggest that CLA and BLA receive inputs from neuron collaterals in various brain regions during stress, which may regulate the CLA and BLA forming in a stress response circuitry.


Subject(s)
Basolateral Nuclear Complex , Claustrum , Social Defeat , Neural Pathways/physiology , Neurons/physiology , Prefrontal Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...