Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Biol Anthropol ; 183(1): 60-78, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37607125

ABSTRACT

OBJECTIVES: The investigation of morphological variation in animals is widely used in taxonomy, ecology, and evolution. Using large datasets for meta-analyses has dramatically increased, raising concerns about dataset compatibilities and biases introduced by contributions of multiple researchers. MATERIALS AND METHODS: We compiled morphological data on 13 variables for 3073 individual mouse lemurs (Cheirogaleidae, Microcebus spp.) from 25 taxa and 153 different sampling locations, measured by 48 different researchers. We introduced and applied a filtering pipeline and quantified improvements in data quality (Shapiro-Francia statistic, skewness, and excess kurtosis). The filtered dataset was then used to test for genus-wide sexual size dimorphism and the applicability of Rensch's, Allen's, and Bergmann's rules. RESULTS: Our pipeline reduced inter-observer bias (i.e., increased normality of data distributions). Inter-observer reliability of measurements was notably variable, highlighting the need to reduce data collection biases. Although subtle, we found a consistent pattern of sexual size dimorphism across Microcebus, with females being the larger (but not heavier) sex. Sexual size dimorphism was isometric, providing no support for Rensch's rule. Variations in tail length but not in ear size were consistent with the predictions of Allen's rule. Body mass and length followed a pattern contrary to predictions of Bergmann's rule. DISCUSSION: We highlighted the usefulness of large multi-researcher datasets for testing ecological hypotheses after correcting for inter-observer biases. Using genus-wide tests, we outlined generalizable patterns of morphological variability across all mouse lemurs. This new methodological toolkit aims to facilitate future large-scale morphological comparisons for a wide range of taxa and applications.


Subject(s)
Cheirogaleidae , Animals , Female , Humans , Body Size , Observer Variation , Data Accuracy , Reproducibility of Results
2.
J Parasitol ; 107(1): 108-114, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33567091

ABSTRACT

Eight species of ectoparasites were collected during 225 gray mouse lemur, Microcebus murinus (J. F. Miller), captures, in Ankarafantsika National Park, Madagascar, in 2010-2011. The ixodid tick, Haemaphysalis lemuris Hoogstraal, was the most common ectoparasite and was mostly represented by nymphs. Other ectoparasites recorded include the polyplacid sucking louse, Lemurpediculus madagascariensis Durden, Kessler, Radespiel, Zimmermann, Hasiniaina, and Zohdy; the ixodid tick, Haemaphysalis simplex Neumann; an undescribed laelapid mite in the genus Aetholaelaps; another laelapid belonging to the genus Androlaelaps; the chigger mite Schoutedenichia microcebi Stekolnikov; an undescribed species of atopomelid mite in the genus Listrophoroides; and an undescribed species of psoroptid mite in the genus Cheirogalalges. Except for the 2 species of ticks and 1 species of chigger, these ectoparasites may be host-specific to M. murinus. Total tick (H. lemuris and H. simplex) infestation was significantly greater in August than October, whereas louse (L. madagascariensis) infestation was significantly greater in October. There was no significant difference in tick infestations between male and female lemurs, but male lemurs had significantly more lice than female lemurs. Reproductive status was not a significant predictor of tick infestation in males and females.


Subject(s)
Cheirogaleidae/parasitology , Ectoparasitic Infestations/veterinary , Primate Diseases/parasitology , Animals , Ectoparasitic Infestations/epidemiology , Ectoparasitic Infestations/parasitology , Female , Madagascar/epidemiology , Male , Poisson Distribution , Prevalence , Primate Diseases/epidemiology , Seasons , Sex Factors
3.
Ecol Evol ; 10(8): 3784-3797, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32313636

ABSTRACT

Acoustic phenotypic variation is of major importance for speciation and the evolution of species diversity. Whereas selective and stochastic forces shaping the acoustic divergence of signaling systems are well studied in insects, frogs, and birds, knowledge on the processes driving acoustic phenotypic evolution in mammals is limited. We quantified the acoustic variation of a call type exchanged during agonistic encounters across eight distinct species of the smallest-bodied nocturnal primate radiation, the Malagasy mouse lemurs. The species live in two different habitats (dry forest vs. humid forest), differ in geographic distance to each other, and belong to four distinct phylogenetic clades within the genus. Genetically defined species were discriminated reliably on the phenotypic level based on their acoustic distinctiveness in a discriminant function analysis. Acoustic variation was explained by genetic distance, whereas differences in morphology, forest type, or geographic distance had no effect. The strong impact of genetics was supported by a correlation between acoustic and genetic distance and the high agreement in branching pattern between the acoustic and molecular phylogenetic trees. In sum, stochastic factors such as genetic drift best explained acoustic diversification in a social communication call of mouse lemurs.

4.
Syst Parasitol ; 96(8): 703-713, 2019 11.
Article in English | MEDLINE | ID: mdl-31452131

ABSTRACT

A new chigger mite species, Schoutedenichia microcebi n. sp. is described from the grey mouse lemur Microcebus murinus (J.F. Miller) from Madagascar. The new species is closely related to S. dutoiti (Radford, 1948), a species described from a single specimen collected on a rodent in South Africa. Examination of the holotype and new material on S. dutoiti from South Africa enabled us to re-describe this species and provide new data on its hosts and geographical distribution.


Subject(s)
Cheirogaleidae/parasitology , Trombiculidae/classification , Trombiculidae/physiology , Animals , Madagascar , Mice , South Africa , Species Specificity
5.
BMC Ecol ; 19(1): 20, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31101046

ABSTRACT

BACKGROUND: Social tolerance strongly influences the patterns of affiliation and aggression in animal societies. However, not much is known about the variation of social tolerance in species living in dispersed social systems that combine solitary foraging activities with the need of coordinating social interactions with conspecifics on a regular basis. This study aims to investigate the sources of variation in social tolerance within a Malagasy primate radiation with dispersed social systems, the mouse lemurs (Microcebus spp.). Six mouse lemur species were selected as model species that belong to three different taxonomic clades, live in two types of forest environments (dry and humid), and differed in this study with respect to their reproductive activity. Six male-female and six male-male dyads of each species were tested temporarily in a standardized social encounter paradigm in Madagascar to collect data on joint use of space, non-agonistic body contacts, aggression rates, the number of conflicts and the establishment of intra- and intersexual dominance. RESULTS: Male-female dyads of the six species differed significantly in the frequency of affiliative and agonistic behaviors. In contrast, the variations between male-male dyads could not be explained by one parameter only, but clade membership, forest type, reproductive state as well as species were all suggested to be partially influential. Only one species (Microcebus mamiratra) showed signals of unambiguous female dominance in all male-female dyads, whereas the others had no or only a few dyads with female dominance. CONCLUSIONS: Variations in social tolerance and its consequences are most likely influenced by two factors, ecology (via forest type) and physiology (via reproductive activity), and only to a lesser extent by clade membership. The study suggests that mouse lemur females have higher aggression rates and more agonistic conflicts with males when females in the population are reproducing, at least in resource-rich humid forests. The study confirms a high degree of social plasticity between species in these small solitary foragers that supports their taxonomic distinctiveness and requires further scientific attention.


Subject(s)
Cheirogaleidae , Animals , Female , Madagascar , Male , Mice , Reproduction
6.
Am J Primatol ; 80(7): e22874, 2018 07.
Article in English | MEDLINE | ID: mdl-29767414

ABSTRACT

Reproduction is a fundamental trait in the life history of any species and contributes to species diversity and evolution. Here, we aim to review the barely known variation in reproductive patterns of the smallest-bodied primate radiation, the Malagasy mouse lemurs, focusing on twelve species of four phylogenetic clades. We present a new reproductive field dataset collected between May and November 1996-2016 for nine species (Microcebus murinus, M. myoxinus, M. ravelobensis, M. bongolavensis, M. danfossi, M. sambiranensis, M. margothmarshae, M. mamiratra, and M. lehilahytsara) and add published field information on three additional species. In the majority of species, the estrus of females was recorded in the period of long days (day length longer than 12 hr), whereas male testes size increased about one to three months prior to this. Reproductive schedules varied considerably between the four clades. Sympatric species-pairs of different clades differed in the timing of female and male reproduction, suggesting strong phylogenetic constraints. Populations of the same species in a different ecological setting varied in the onset of reproduction, suggesting substantial environmental plasticity. Warm temperatures and rainfall throughout the year may allow for less expressed reproductive seasonality. Our results suggest that an interplay between phylogenetic relatedness, ambient temperature (as a proxy for thermo regulatory constraints), and rainfall (as a proxy for food availability), may best explain this variation. Findings further point to a more complex control of mouse lemur reproduction than previously described and illuminate phylogenetic constraints and adaptive potentials in behavioral reaction norms of a species-rich primate radiation.


Subject(s)
Cheirogaleidae/physiology , Reproduction/physiology , Animals , Cheirogaleidae/classification , Female , Madagascar , Male , Menstrual Cycle/physiology , Phylogeny , Rain , Seasons , Temperature , Testis/physiology
7.
Am J Primatol ; 80(6): e22866, 2018 06.
Article in English | MEDLINE | ID: mdl-29722032

ABSTRACT

The critically endangered Claire's mouse lemur, only found in the evergreen rain forest of the National Park Lokobe (LNP) and a few lowland evergreen rain forest fragments of northern Madagascar, was described recently. The present study provides the first quantified information on vocal acoustics of calls, sound associated behavioral context, acoustic niche, and vocal activity of this species. We recorded vocal and social behavior of six male-female and six male-male dyads in a standardized social-encounter paradigm in June and July 2016 at the LNP, Nosy Bé island. Over six successive nights per dyad, we audio recorded and observed behaviors for 3 hr at the beginning of the activity period. Based on the visual inspection of spectrograms and standardized multiparametric sound analysis, we identified seven different call types. Call types can be discriminated based on a combination of harmonicity, fundamental frequency variation, call duration, and degree of tonality. Acoustic features of tonal call types showed that for communication, mouse lemurs use the cryptic, high frequency/ultrasonic frequency niche. Two call types, the Tsak and the Grunt call, were emitted most frequently. Significant differences in vocal activity of the Tsak call were found between male-female and male-male dyads, linked primarily to agonistic conflicts. Dominant mouse lemurs vocalized more than subdominant ones, suggesting that signaling may present an honest indicator of fitness. A comparison of our findings of the Claire's mouse lemur with published findings of five bioacoustically studied mouse lemur species points to the notion that a complex interplay between ecology, predation pressure, and phylogenetic relatedness may shape the evolution of acoustic divergence between species in this smallest-bodied primate radiation. Thus, comparative bioacoustic studies, using standardized procedures, are promising to unravel the role of vocalization for primate species diversity and evolution and for identifying candidates for vocalization-based non-invasive monitoring for conservation purposes.


Subject(s)
Cheirogaleidae/physiology , Vocalization, Animal/physiology , Animals , Endangered Species , Female , Madagascar , Male , Social Dominance , Sound Spectrography , Ultrasonic Waves
8.
J Med Entomol ; 55(4): 910-914, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29659934

ABSTRACT

Lemurpediculus madagascariensis sp. nov. (Phthiraptera: Anoplura: Polyplacidae) is described from the Gray Mouse lemur, Microcebus murinus (J. F. Miller) (Primates: Cheirogaleidae), from Ankarafantsika National Park, Madagascar. Lemurs were trapped using Sherman Live Traps and visually inspected for lice, which were preserved in 90% ethanol. Adults of both sexes and the third-instar nymph of the new species are illustrated and distinguished from the four previously known species of Lemurpediculus: L. verruculosus (Ward); L. petterorum Paulian; L. claytoni Durden, Blanco, and Seabolt; and L. robbinsi Durden, Blanco, and Seabolt. It is not known if the new species of louse is a vector of any pathogens or parasites.


Subject(s)
Anoplura/classification , Cheirogaleidae , Lice Infestations/parasitology , Animals , Anoplura/anatomy & histology , Anoplura/growth & development , Anoplura/physiology , Female , Madagascar , Male , Nymph/anatomy & histology , Nymph/classification , Nymph/growth & development , Nymph/physiology
9.
Front Zool ; 11(1): 14, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24555438

ABSTRACT

INTRODUCTION: Maternal kin selection is a driving force in the evolution of mammalian social complexity and it requires that kin are distinctive from nonkin. The transition from the ancestral state of asociality to the derived state of complex social groups is thought to have occurred via solitary foraging, in which individuals forage alone, but, unlike the asocial ancestors, maintain dispersed social networks via scent-marks and vocalizations. We hypothesize that matrilineal signatures in vocalizations were an important part of these networks. We used the solitary foraging gray mouse lemur (Microcebus murinus) as a model for ancestral solitary foragers and tested for matrilineal signatures in their calls, thus investigating whether such signatures are already present in solitary foragers and could have facilitated the kin selection thought to have driven the evolution of increased social complexity in mammals. Because agonism can be very costly, selection for matrilineal signatures in agonistic calls should help reduce agonism between unfamiliar matrilineal kin. We conducted this study on a well-studied population of wild mouse lemurs at Ankarafantsika National Park, Madagascar. We determined pairwise relatedness using seven microsatellite loci, matrilineal relatedness by sequencing the mitrochondrial D-loop, and sleeping group associations using radio-telemetry. We recorded agonistic calls during controlled social encounters and conducted a multi-parametric acoustic analysis to determine the spectral and temporal structure of the agonistic calls. We measured 10 calls for each of 16 females from six different matrilineal kin groups. RESULTS: Calls were assigned to their matriline at a rate significantly higher than chance (pDFA: correct = 47.1%, chance = 26.7%, p = 0.03). There was a statistical trend for a negative correlation between acoustic distance and relatedness (Mantel Test: g = -1.61, Z = 4.61, r = -0.13, p = 0.058). CONCLUSIONS: Mouse lemur agonistic calls are moderately distinctive by matriline. Because sleeping groups consisted of close maternal kin, both genetics and social learning may have generated these acoustic signatures. As mouse lemurs are models for solitary foragers, we recommend further studies testing whether the lemurs use these calls to recognize kin. This would enable further modeling of how kin recognition in ancestral species could have shaped the evolution of complex sociality.

SELECTION OF CITATIONS
SEARCH DETAIL
...