Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Inf Model ; 63(10): 2992-3004, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37126823

ABSTRACT

As weak acids or bases, in solution, drug molecules are in either their ionized or nonionized states. A high degree of ionization is essential for good water solubility of a drug molecule and is required for drug-receptor interactions, whereas the nonionized form improves a drug's lipophilicity, allowing the ligand to cross the cell membrane. The penetration of a drug ligand through cell membranes is mainly governed by the pKa of the drug molecule and the membrane environment. In this study, with the aim of predicting the acetonitrile pKa's (pKa(MeCN)) of eight drug-like thiazol-2-imine derivatives, we propose a very accurate and computationally affordable protocol by using several quantum mechanical approaches. Benchmark studies were conducted on a set of training molecules, which were selected from the literature with known pKa(water) and pKa(MeCN). Highly well-correlated pKa values were obtained when the calculations were performed with the isodesmic method at the M062X/6-31G** level of theory in conjunction with SMD solvation model for nitrogen-containing heterocycles. Finally, experimentally unknown pKa(MeCN) values of eight thiazol-2-imine structures, which were previously synthesized by some of us, are proposed.


Subject(s)
Imines , Water , Chemical Phenomena , Ligands , Solubility , Water/chemistry
2.
Org Biomol Chem ; 21(21): 4518-4528, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37199703

ABSTRACT

The human topoisomerase IB (hTopoIB) enzyme is a monomeric protein that relaxes the supercoils on double-stranded DNA by forming a covalent DNA/hTopoIB complex by introducing a nick on the DNA strand. Inhibition of hTopoIB results in cell death, which makes this protein a strong target for the treatment of various cancer types, including small-cell lung cancers and ovarian cancers. Camptothecin (CPT) and indenoisoquinoline (IQN) classes of compounds inhibit the hTopoIB activity by intercalating to nicked DNA pairs; however, these inhibitors show different preferences towards DNA bases when bound to the DNA/hTopoIB complex. Here, we investigated the affinities of CPT and one IQN derivative towards different DNA base pairs. The two inhibitors showed different stacking behaviors in the intercalation site and interaction pattern with binding pocket residues, indicating that they have different inhibition mechanisms in the binding pocket that affects the base-pair selectivity. The results obtained from this study are expected to guide researchers in designing gene-specific and more potent compounds to fight cancer through hTopoIB poisoning.


Subject(s)
Neoplasms , Topoisomerase I Inhibitors , Humans , Topoisomerase I Inhibitors/pharmacology , DNA/chemistry , DNA Topoisomerases, Type I/chemistry , Base Pairing , Camptothecin/chemistry , Enzyme Inhibitors/pharmacology
3.
Org Biomol Chem ; 20(38): 7622-7631, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36111614

ABSTRACT

5-Benzyl-3-(o-aryl)-2-thiohydantoin and 5-isobutyl-3-(o-aryl)-2-thiohydantoin derivatives (o-aryl = o-tolyl and o-bromophenyl) have been synthesized by reacting o-aryl isothiocyanates with S-phenylalanine methyl ester hydrochloride or with S-leucine methyl ester hydrochloride in the presence of triethylamine (TEA). The synthesized compounds have a chirality center at C5 of the heterocyclic ring and a chirality axis, the N3-C(aryl) bond. The axially chiral compounds were shown to exist in unequal amounts of SM, SP, RM and RP stereoisomeric forms with a high prevalence of the P isomers over the M isomers. The isomeric assignments were done by comparing the 1H NMR spectra with the HPLC chromatograms. The stereoisomers were resolved micropreparatively by HPLC on chiral stationary phases and the interconversion of the single isomers has been investigated. The conversion type has been determined as epimerization or rotation by the HPLC analyses. It has been found that although the stereoisomers converted to each other only by rotation in toluene, in ethanol epimerization (racemization at C5 of the heteroring) was accompanied with rotation depending on the duration, temperature of the thermal interconversion experiment and the nature of the ortho substituent. The occurrence of epimerization was also proved through H/D exchange reactions via1H NMR experiments done in CD3OD. The rotation and epimerization mechanisms of synthesized compounds were further elucidated by Density Functional Theory (DFT) calculations at M062X/6-311 + G** level of theory and the results were shown to be in harmony with experimental findings.


Subject(s)
Thiohydantoins , Toluene , Ethanol , Isothiocyanates , Rotation , Solvents
4.
Ind Eng Chem Res ; 60(35): 12999-13012, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34526735

ABSTRACT

Covalent organic frameworks (COFs) are promising materials for gas storage and separation; however, the potential of COFs for separation of CH4 from industrially relevant gases such as H2, N2, and C2H6 is yet to be investigated. In this work, we followed a multiscale computational approach to unlock both the adsorption- and membrane-based CH4/H2, CH4/N2, and C2H6/CH4 separation potentials of 572 COFs by combining grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations and density functional theory (DFT) calculations. Adsorbent performance evaluation metrics of COFs, adsorption selectivity, working capacity, regenerability, and adsorbent performance score were calculated for separation of equimolar CH4/H2, CH4/N2, and C2H6/CH4 mixtures at vacuum swing adsorption (VSA) and pressure swing adsorption (PSA) conditions to identify the best-performing COFs for each mixture. Results showed that COFs could achieve selectivities of 2-85, 1-7, and 2-23 for PSA-based CH4/H2, CH4/N2, and C2H6/CH4 separations, respectively, outperforming conventional adsorbents such as zeolites and activated carbons for each mixture. Structure-performance relations revealed that COFs with pore sizes <10 Å are promising adsorbents for all mixtures. We identified the gas adsorption sites in the three top-performing COFs commonly identified for each mixture by DFT calculations and computed the binding strength of gases, which were found to be on the order of C2H6 > CH4 > N2 > H2, supporting the GCMC results. Nucleus-independent chemical shift (NICS) indexes of aromaticity for adsorption sites were calculated, and the results revealed that the degree of linker aromaticity could be a measure for the selection or design of highly alkane-selective COF adsorbents over N2 and H2. Finally, COF membranes were shown to achieve high H2 permeabilities, 4.57 × 103 -1.25 × 106 Barrer, and decent membrane selectivities, as high as 4.3, outperforming polymeric and MOF-based membranes for separation of H2 from CH4.

5.
J Comput Aided Mol Des ; 35(7): 841-851, 2021 07.
Article in English | MEDLINE | ID: mdl-34164769

ABSTRACT

The physicochemical properties of a drug molecule determine the therapeutic effectiveness of the drug. Thus, the development of fast and accurate theoretical approaches for the prediction of such properties is inevitable. The participation to the SAMPL7 challenge is based on the estimation of logP coefficients and pKa values of small drug-like sulfonamide derivatives. Thereby, quantum mechanical calculations were carried out in order to calculate the free energy of solvation and the transfer energy of 22 drug-like compounds in different environments (water and n-octanol) by employing the SMD solvation model. For logP calculations, we studied eleven different methodologies to calculate the transfer free energies, the lowest RMSE value was obtained for the M06L/def2-TZVP//M06L/def2-SVP level of theory. On the other hand, we employed an isodesmic reaction scheme within the macro pKa framework; this was based on selecting reference molecules similar to the SAMPL7 challenge molecules. Consequently, highly well correlated pKa values were obtained with the M062X/6-311+G(2df,2p)//M052X/6-31+G(d,p) level of theory.


Subject(s)
1-Octanol/chemistry , Entropy , Quantum Theory , Water/chemistry , Humans , Models, Chemical , Molecular Structure , Pharmaceutical Preparations/chemistry , Solubility , Solvents/chemistry , Sulfonamides/chemistry , Thermodynamics
6.
J Chem Inf Model ; 61(6): 2733-2743, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34137248

ABSTRACT

In this study, we present an accurate protocol for the fast prediction of pKa's of carboxylic acids based on the linear relationship between computed atomic charges of the anionic form of the carboxylate fragment and their experimental pKa values. Five charge descriptors, three charge models, three solvent models, gas-phase calculations, several DFT methods (a combination of eight DFT functionals and fifteen basis sets), and four different semiempirical approaches were tested. Among those, the best combination to reproduce experimental pKa's is to compute the natural population analysis atomic charge using the solvation model based on density model at the M06L/6-311G(d,p) level of theory and selecting the maximum atomic charge on the carboxylic oxygen atoms (R2 = 0.955). The applicability of the suggested protocol and its stability along geometrical changes are verified by molecular dynamics simulations performed for a set of aspartate, glutamate, and alanine peptides. By reporting the calculated atomic charge of the carboxylate form into the linear relationship derived in this work, it should be possible to accurately estimate the amino acid's pKa's in a protein environment.


Subject(s)
Carboxylic Acids , Solvents
7.
Org Biomol Chem ; 18(12): 2233-2241, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32022073

ABSTRACT

Recently, Sarigul and Dogan have synthesized a number of enantiomerically enriched axially chiral atropoisomeric 2-thiohydantoins by the reaction of l-amino acid ester salts and o-aryl isothiocyanates in the presence of triethyl amine (TEA) in dichloromethane. The non-axially chiral derivative 5-methyl-3-phenyl-2-thiohydantoin gave a racemic product whereas the axially chiral 5-methyl-3-o-bromophenyl-2-thiohydantoin was less prone to racemize at C5 of the heterocyclic ring. In this study, we present a computational study (M06-2X/6-311+G(d,p) for C, H, O, N and S; M06-2X/6-311++G(3df,3pd) for Br) in order to propose plausible mechanisms for the racemization and cyclization steps for 2-thiohydantoin derivatives. The study includes rationalization based on steric as well as the electrostatic effects to elucidate the epimerization differences at C5.

SELECTION OF CITATIONS
SEARCH DETAIL