Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709681

ABSTRACT

Cuticular wax is a protective layer on the aerial surfaces of land plants. In Arabidopsis (Arabidopsis thaliana), cuticular wax is mainly constituted of compounds derived from very-long-chain fatty acids (VLCFAs) with chain lengths longer than C28. CER2-LIKE (ECERIFERUM2-LIKE) proteins interact with CER6/KCS6 (ECERIFERUM6/ß-Ketoacyl-CoA Synthase6), the key enzyme of the fatty acid elongase complex, to modify its substrate specificity for VLCFA elongation past C28. However, the molecular regulatory mechanism of CER2-LIKE proteins remains unclear. Arabidopsis eceriferum19 (cer19) mutants display wax-deficient stems caused by loss of waxes longer than C28, indicating that CER19 may participate in the CER2-LIKE-mediated VLCFA elongation past C28. Using positional cloning and genetic complementation, we showed that CER19 encodes Acetyl-CoA Carboxylase1 (ACC1), which catalyzes the synthesis of malonyl-CoA, the essential substrate for the CER6/KCS6-mediated condensation reaction in VLCFA synthesis. We demonstrated that ACC1 physically interacts with CER2-LIKE proteins via split-ubiquitin yeast two-hybrid (SUY2H) and firefly luciferase complementation imaging (LCI) analysis. Additionally, heterologous expression in yeast and genetic analysis in Arabidopsis revealed that ACC1 affects CER2 activity to influence VLCFA elongation past C28. These findings imply that CER2-LIKE proteins might function as a link between ACC1 and CER6/KCS6 and subsequently enhance CER6/KCS6 binding to malonyl-CoA for further utilization in VLCFA elongation past C28. This information deepens our understanding of the complex mechanism of cuticular wax biosynthesis.

2.
New Phytol ; 242(5): 2251-2269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501480

ABSTRACT

The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.


Subject(s)
Waxes , Waxes/metabolism , Alcohols/metabolism , Phylogeny , Marchantia/genetics , Marchantia/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Bryopsida/genetics , Bryopsida/metabolism , Bryophyta/genetics , Bryophyta/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Biosynthetic Pathways/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Acyltransferases/metabolism , Acyltransferases/genetics , Biological Evolution , Arabidopsis/genetics , Arabidopsis/metabolism , Mutation/genetics
3.
New Phytol ; 242(3): 1189-1205, 2024 May.
Article in English | MEDLINE | ID: mdl-38523559

ABSTRACT

Sphingolipids are widespread, abundant, and essential lipids in plants and in other eukaryotes. Glycosyl inositol phosphorylceramides (GIPCs) are the most abundant class of plant sphingolipids, and are enriched in the plasma membrane of plant cells. They have been difficult to study due to lethal or pleiotropic mutant phenotypes. To overcome this, we developed a CRISPR/Cas9-based method for generating multiple and varied knockdown and knockout populations of mutants in a given gene of interest in the model moss Physcomitrium patens. This system is uniquely convenient due to the predominantly haploid state of the Physcomitrium life cycle, and totipotency of Physcomitrium protoplasts used for transformation. We used this approach to target the INOSITOL PHOSPHORYLCERAMIDE SYNTHASE (IPCS) gene family, which catalyzes the first, committed step in the synthesis of GIPCs. We isolated knockout single mutants and knockdown higher-order mutants showing a spectrum of deficiencies in GIPC content. Remarkably, we also identified two mutant alleles accumulating inositol phosphorylceramides, the direct products of IPCS activity, and provide our best explanation for this unexpected phenotype. Our approach is broadly applicable for studying essential genes and gene families, and for obtaining unusual lesions within a gene of interest.


Subject(s)
Plants , Sphingolipids , Alleles , Sphingolipids/metabolism , Plants/metabolism , Cell Membrane/metabolism
4.
J Exp Bot ; 73(9): 2785-2798, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35560193

ABSTRACT

Sphingolipids are essential metabolites found in all plant species. They are required for plasma membrane integrity, tolerance of and responses to biotic and abiotic stresses, and intracellular signalling. There is extensive diversity in the sphingolipid content of different plant species, and in the identities and roles of enzymes required for their processing. In this review, we survey results obtained from investigations of the classical genetic model Arabidopsis thaliana, from assorted dicots with less extensive genetic toolkits, from the model monocot Oryza sativa, and finally from the model bryophyte Physcomitrium patens. For each species or group, we first broadly summarize what is known about sphingolipid content. We then discuss the most insightful and puzzling features of modifications to the hydrophobic ceramides, and to the polar headgroups of complex sphingolipids. Altogether, these data can serve as a framework for our knowledge of sphingolipid metabolism across the plant kingdom. This chemical and metabolic heterogeneity underpins equally diverse functions. With greater availability of different tools for analytical measurements and genetic manipulation, our field is entering an exciting phase of expanding our knowledge of the biological functions of this persistently cryptic class of lipids.


Subject(s)
Arabidopsis , Bryopsida , Arabidopsis/genetics , Bryopsida/metabolism , Ceramides/chemistry , Ceramides/metabolism , Plants/metabolism , Sphingolipids/chemistry , Sphingolipids/metabolism
5.
Plants (Basel) ; 11(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35567193

ABSTRACT

Sesquiterpene lactone (STL) and natural rubber (NR) are characteristic isoprenoids in lettuce (Lactuca sativa). Both STL and NR co-accumulate in laticifers, pipe-like structures located along the vasculature. NR-biosynthetic genes are exclusively expressed in laticifers, but cell-type specific expression of STL-biosynthetic genes has not been studied. Here, we examined the expression pattern of germacrene A synthase (LsGAS), which catalyzes the first step in STL biosynthesis in lettuce. Quantitative PCR and Illumina read mapping revealed that the transcripts of two GAS isoforms (LsGAS1/LsGAS2) are expressed two orders of magnitude (~100-200) higher in stems than laticifers. This result implies that the cellular site for LsGAS1/2 expression is not in laticifers. To gain more insights, promoters of LsGAS1/2 were cloned and fused to ß-glucuronidase (GUS), followed by transformations of lettuce with these promoter-GUS constructs. In in situ GUS assays, the GUS expression driven by the LsGAS1/2 promoters was tightly associated with vascular bundles. High-resolution microsections showed that GUS signals are not present in laticifers but are detected in the vascular parenchyma cells neighboring the laticifers. These results suggest that expression of LsGAS1/2 occurs in the parenchyma cells neighboring laticifers, while the resulting STL metabolites accumulate in laticifers. It can be inferred that active metabolite-trafficking occurs from the parenchyma cells to laticifers in lettuce.

6.
J Exp Bot ; 72(15): 5569-5583, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34111292

ABSTRACT

Glycosylceramides are abundant membrane components in vascular plants and are associated with cell differentiation, organogenesis, and protein secretion. Long-chain base (LCB) Δ4-desaturation is an important structural feature for metabolic channeling of sphingolipids into glycosylceramide formation in plants and fungi. In Arabidopsis thaliana, LCB Δ4-unsaturated glycosylceramides are restricted to pollen and floral tissue, indicating that LCB Δ4-desaturation has a less important overall physiological role in A. thaliana. In the bryophyte Physcomitrium patens, LCB Δ4-desaturation is a feature of the most abundant glycosylceramides of the gametophyte generation. Metabolic changes in the P. patens null mutants for the sphingolipid Δ4-desaturase (PpSD4D) and the glycosylceramide synthase (PpGCS), sd4d-1 and gcs-1, were determined by ultra-performance liquid chromatography coupled with nanoelectrospray ionization and triple quadrupole tandem mass spectrometry analysis. sd4d-1 plants lacked unsaturated LCBs and the most abundant glycosylceramides. gcs-1 plants lacked all glycosylceramides and accumulated hydroxyceramides. While sd4d-1 plants mostly resembled wild-type plants, gcs-1 mutants were impaired in growth and development. These results indicate that LCB Δ4-desaturation is a prerequisite for the formation of the most abundant glycosylceramides in P. patens. However, loss of unsaturated LCBs does not affect plant viability, while blockage of glycosylceramide synthesis in gcs-1 plants causes severe plant growth and development defects.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Bryopsida , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Pollen , Sphingolipids
7.
Plant Cell Physiol ; 62(5): 827-838, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-33749753

ABSTRACT

Cuticular waxes are derived from very-long-chain fatty acid (VLCFA) precursors made by the concerted action of four enzymes that form the fatty acid (FA) elongation complex. The condensing enzyme of the complex confers specificity to substrates of different chain lengths, yet on its own cannot account for the biosynthesis of VLCFAs longer than 28 carbons (C28). Recent evidence from Arabidopsis thaliana points to a synergistic role of clade II BAHD acyltransferases and condensing enzymes in the elongation of VLCFAs beyond C28. In Populus trichocarpa, clade II is composed of seven uncharacterized paralogous genes (PtCER2-like1-7). In the present study, five of these genes were heterologously expressed in yeast and their respective FA profiles were determined. PtCER2-likes differentially altered the accumulation of C28 and C30 FAs when expressed in the presence of the condensing enzyme AtCER6. Among these, PtCER2-like5 produced the highest levels of C28 FAs in yeast and its expression was localized to the epidermis in ß-glucuronidase-reporter poplar lines, consistent with a role in cuticular wax biosynthesis. Complementation of the A. thaliana cer2-5 mutant with PtCER2-like5 increased the levels of C28-derived cuticular waxes at the expense of C30-derived components. Together, these results demonstrate that the role of CER2-likes in cuticular wax biosynthesis is conserved in Populus clade II BAHD acyltransferases.


Subject(s)
Acyltransferases/genetics , Fatty Acids/biosynthesis , Plant Proteins/genetics , Populus/metabolism , Waxes/metabolism , Acyltransferases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fatty Acids/chemistry , Gene Expression Regulation, Plant , Phylogeny , Plant Components, Aerial/cytology , Plant Components, Aerial/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Populus/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
8.
New Phytol ; 231(1): 297-314, 2021 07.
Article in English | MEDLINE | ID: mdl-33720428

ABSTRACT

Sphingolipids are enriched in microdomains in the plant plasma membrane (PM). Hydroxyl groups in the characteristic long-chain base (LCB) moiety might be essential for the interaction between sphingolipids and sterols during microdomain formation. Investigating LCB hydroxylase mutants in Physcomitrium patens might therefore reveal the role of certain plant sphingolipids in the formation of PM subdomains. Physcomitrium patens mutants for the LCB C-4 hydroxylase S4H were generated by homologous recombination. Plants were characterised by analysing their sphingolipid and steryl glycoside (SG) profiles and by investigating different gametophyte stages. s4h mutants lost the hydroxyl group at the C-4 position of their LCB moiety. Loss of this hydroxyl group caused global changes in the moss sphingolipidome and in SG composition. Changes in membrane lipid composition may trigger growth defects by interfering with the localisation of membrane-associated proteins that are crucial for growth processes such as signalling receptors or callose-modifying enzymes. Loss of LCB-C4 hydroxylation substantially changes the P. patens sphingolipidome and reveals a key role for S4H during development of nonvascular plants. Physcomitrium patens is a valuable model for studying the diversification of plant sphingolipids. The simple anatomy of P. patens facilitates visualisation of physiological processes in biological membranes.


Subject(s)
Bryopsida , Sphingolipids , Glucans , Hydroxylation
9.
Plant Cell Physiol ; 61(12): 2126-2138, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33079186

ABSTRACT

Condensing enzymes catalyze the committed reaction of fatty acid elongation and determine the chain length of fatty acids accepted and produced by the elongation complex. While necessary for the elongation of very-long-chain fatty acids (VLCFAs), identified plant condensing enzymes cannot efficiently produce VLCFAs longer than 28 carbons, which are precursors for the most abundant cuticular waxes of most plant species that have been surveyed. The eceriferum2 (cer2) mutant of Arabidopsis thaliana has a severe wax-deficient phenotype and specifically lacks waxes longer than 28 carbons, but the CER2 protein does not share sequence similarity with condensing enzymes. Instead, CER2 is homologous to BAHD acyltransferases. Heterologous expression in yeast previously demonstrated that CER2, and a small clade of BAHD acyltransferases with high sequence identity to CER2, can extend the chain-length specificity of the condensing enzyme CER6. This biochemical function is distinct from that of the broader BAHD acyltransferase family. The product specificity and physiological functions of individual CER2-LIKE proteins are unique. Here, we demonstrate that CER2 physically interacts with the fatty acid elongase. We cloned chimeric CER2-LIKE proteins and expressed these in yeast cells to identify the features that define the substrate specificities of CER2-LIKEs. We generated homology-based structural models to compare CER2-LIKEs and BAHD acyltransferases. In addition, based on the current phylogenetic analysis of the CER2-LIKE clade, we describe two further Arabidopsis CER2-LIKE genes, CER2-LIKE3 and CER2-LIKE4. We used yeast expression and mutant analysis to characterize these genes. Collectively, these results expand our knowledge of the functions of CER2-LIKEs, the BAHD acyltransferase family and cuticular wax metabolism.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Fatty Acids/metabolism , Genes, Plant/genetics , Genes, Plant/physiology , Protein Structure, Tertiary
10.
Plant Physiol ; 181(3): 901-915, 2019 11.
Article in English | MEDLINE | ID: mdl-31484679

ABSTRACT

Secretory trafficking is highly conserved in all eukaryotic cells and is required for secretion of proteins as well as extracellular matrix components. In plants, the export of cuticular waxes and various cell wall components relies on secretory trafficking, but the molecular mechanisms underlying their secretion are not well understood. In this study, we characterize the Arabidopsis (Arabidopsis thaliana) dwarf eceriferum11 (cer11) mutant and we show that it exhibits reduced stem cuticular wax deposition, aberrant seed coat mucilage extrusion, and delayed secondary cell wall columella formation, as well as a block in secretory GFP trafficking. Cloning of the CER11 gene revealed that it encodes a C-TERMINAL DOMAIN PHOSPHATASE-LIKE2 (CPL2) protein. Thus, secretory trafficking in plant cells in general, and secretion of extracellular matrix constituents in developing epidermal cells in particular, involves a dephosphorylation step catalyzed by CER11/CPL2.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Phenotype , Plant Epidermis/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Transport/genetics , Protein Transport/physiology , Seeds/metabolism , Ubiquitin-Protein Ligases/genetics , beta-Galactosidase/metabolism
11.
Plant Cell Physiol ; 60(5): 1041-1054, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30715495

ABSTRACT

Long-chain acyl-CoA synthetases (LACSs) play diverse and essential roles in lipid metabolism. The genomes of model eukaryotic organisms encode multiple LACS genes, and the substrate specificities of LACS homologs often overlap substantially. Homologous LACSs tend to differ in their expression patterns, localizations, and, by extension, the metabolic pathways to which they contribute. The Arabidopsis genome encodes a family of nine LACS genes, which have been characterized largely by reverse genetic analysis of mutant phenotypes. Because of redundancy, distinguishing the contributions of some Arabidopsis LACS genes has been challenging. Here, we have attempted to clarify the functions of LACSs that functionally overlap by synopsizing the results of previous work, isolating a suite of higher-order mutants that were previously lacking, and analyzing oil, wax, cutin, cuticle permeability, fertility and growth phenotypes. LACS1, LACS2, LACS4, LACS8 and LACS9 all affect cuticular lipid metabolism, but have different precise roles. Seed set, seed weight and storage oil amounts of higher-order lacs1, lacs2, lacs4, lacs8 and lacs9 mutants vary greatly, with these traits subject to different effects of fertility and oil synthesis defects. LACS4, LACS8 and LACS9 have partially redundant roles in development, as lacs4 lacs8 and lacs4 lacs9 double mutants are dwarf. lacs4 lacs8 lacs9 triple mutants were not recovered, and are assumed to be non-viable. Together, these results sketch a complex network of functions and functional interactions within the Arabidopsis LACS gene family.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Coenzyme A Ligases/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Coenzyme A Ligases/genetics , Gene Expression Regulation, Plant , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Plant Oils/metabolism , Seeds/genetics , Seeds/metabolism
12.
Plant Cell Physiol ; 59(4): 806-822, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29401261

ABSTRACT

The cuticle coats the primary aerial surfaces of land plants. It consists of cutin and waxes, which provide protection against desiccation, pathogens and herbivores. Acyl cuticular waxes are synthesized via elongase complexes that extend fatty acyl precursors up to 38 carbons for downstream modification pathways. The leaves of 21 barley eceriferum (cer) mutants appear to have less or no epicuticular wax crystals, making these mutants excellent tools for identifying elongase and modification pathway biosynthetic genes. Positional cloning of the gene mutated in cer-zh identified an elongase component, ß-ketoacyl-CoA synthase (CER-ZH/HvKCS1) that is one of 34 homologous KCSs encoded by the barley genome. The biochemical function of CER-ZH was deduced from wax and cutin analyses and by heterologous expression in yeast. Combined, these experiments revealed that CER-ZH/HvKCS1 has a substrate specificity for C16-C20, especially unsaturated, acyl chains, thus playing a major role in total acyl chain elongation for wax biosynthesis. The contribution of CER-ZH to water barrier properties of the cuticle and its influence on the germination of barley powdery mildew fungus were also assessed.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Ascomycota/growth & development , Hordeum/enzymology , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Proteins/metabolism , Waxes/metabolism , Chromosome Mapping , Conserved Sequence , Crystallography, X-Ray , Dehydration , Droughts , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Association Studies , Hordeum/genetics , Membrane Lipids/metabolism , Mutation/genetics , Phenotype , Saccharomyces cerevisiae/metabolism , Stress, Physiological/genetics , Transcription, Genetic
13.
Plants (Basel) ; 6(2)2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28608803

ABSTRACT

The elongation of very-long-chain fatty acids is a conserved process used for the production of many metabolites, including plant cuticular waxes. The elongation of precursors of the most abundant cuticular wax components of some plants, however, is unique in requiring ECERIFERUM2-LIKE (CER2-LIKE) proteins. CER2-LIKEs are a clade within the BAHD superfamily of acyltransferases. They are known to be required for cuticular wax production in both Arabidopsis and maize based on mutant studies. Heterologous expression of Arabidopsis and rice CER2-LIKEs in Saccharomyces cerevisiae has demonstrated that they modify the chain-length specificity of elongation when paired with particular condensing enzymes. Despite sequence homology, CER2-LIKEs are distinct from the BAHD superfamily in that they do not appear to use acyl transfer activity to fulfill their biological function. Here, we review the discovery and characterization of CER2-LIKEs, propose several models to explain their function, and explore the importance of CER2-LIKE proteins for the evolution of plant cuticles.

14.
Mol Plant Pathol ; 18(2): 210-221, 2017 02.
Article in English | MEDLINE | ID: mdl-26950180

ABSTRACT

Ustilago maydis is an obligate biotrophic fungal pathogen which causes common smut disease of corn. To proliferate in host tissue, U. maydis must gain access to nutrients and overcome plant defence responses, such as the production of reactive oxygen species. The elucidation of the mechanisms by which U. maydis meets these challenges is critical for the development of strategies to combat smut disease. In this study, we focused on the contributions of phospholipases (PLs) to the pathogenesis of corn smut disease. We identified 11 genes encoding putative PLs and characterized the transcript levels for these genes in the fungus grown in culture and during infection of corn tissue. To assess the contributions of specific PLs, we focused on two genes, lip1 and lip2, which encode putative phospholipase A2 (PLA2 ) enzymes with similarity to platelet-activating factor acetylhydrolases. PLA2 enzymes are known to counteract oxidative damage to lipids in other organisms. Consistent with a role in the mitigation of oxidative damage, lip2 mutants were sensitive to oxidative stress provoked by hydrogen peroxide and by increased production of reactive oxygen species caused by inhibitors of mitochondrial functions. Importantly, mutants defective in lip2, but not lip1, were attenuated for virulence in corn seedlings. Finally, a comparative analysis of fatty acid and cardiolipin profiles in the wild-type strain and a lip2 mutant revealed differences consistent with a protective role for Lip2 in maintaining lipid homeostasis and mitochondrial health during proliferation in the hostile host environment.


Subject(s)
Fungal Proteins/metabolism , Oxidative Stress , Phospholipases/metabolism , Ustilago/enzymology , Ustilago/pathogenicity , Cardiolipins/metabolism , Cell Respiration , Fungal Proteins/genetics , Gene Deletion , Genome, Fungal , Haploidy , Mutation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ustilago/cytology , Ustilago/genetics , Virulence/genetics
15.
Plant Physiol ; 167(3): 682-92, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25596184

ABSTRACT

The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Fatty Acids/metabolism , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Plant , Metabolomics , Organ Specificity/genetics , Phenotype , Plant Epidermis/metabolism , Plant Infertility , Plant Stems/metabolism , Plants, Genetically Modified , Reproduction/genetics , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Waxes/metabolism
16.
Plant Sci ; 210: 93-107, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23849117

ABSTRACT

Very-long-chain fatty acids (VLCFAs) are essential molecules produced by all plant cells, and are components or precursors of numerous specialized metabolites synthesized in specific cell types. VLCFAs are elongated by an endoplasmic reticulum-localized fatty acid elongation complex of four core enzymes, which sequentially add two carbon units to a growing acyl chain. Identification and characterization of these enzymes in Arabidopsis thaliana has revealed that three of the four enzymes act as generalists, contributing to all metabolic pathways that require VLCFAs. A fourth component, the condensing enzyme, provides substrate specificity and determines the amount of product synthesized by the entire complex. Land plants have two families of condensing enzymes, FATTY ACID ELONGATION 1 (FAE1)-type ketoacyl-CoA synthases (KCSs) and ELONGATION DEFECTIVE-LIKEs (ELO-LIKEs). Our current knowledge of the specific roles of different condensing enzymes is incomplete, as is our understanding of the biological function of a recently characterized family of proteins, CER2-LIKEs, which contribute to condensing enzyme function. More broadly, the stoichiometry and quaternary structure of the fatty acid elongase complex remains poorly understood, and specific phylogenetic and biochemical questions persist for each component of the complex. Investigation of VLCFA elongation in different organisms, structural biochemistry, and cell biology approaches stand to greatly benefit this field of plant biology.


Subject(s)
Arabidopsis/enzymology , Embryophyta/enzymology , Fatty Acids/metabolism , Plant Proteins/metabolism , Acetyltransferases/chemistry , Acetyltransferases/genetics , Acetyltransferases/metabolism , Arabidopsis/genetics , Embryophyta/genetics , Endoplasmic Reticulum/metabolism , Fatty Acid Elongases , Models, Molecular , Multienzyme Complexes , Plant Proteins/chemistry , Plant Proteins/genetics , Substrate Specificity
17.
J Biotechnol ; 166(3): 122-34, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23602801

ABSTRACT

Plants produce a vast array of specialized metabolites, many of which are used as pharmaceuticals, flavors, fragrances, and other high-value fine chemicals. However, most of these compounds occur in non-model plants for which genomic sequence information is not yet available. The production of a large amount of nucleotide sequence data using next-generation technologies is now relatively fast and cost-effective, especially when using the latest Roche-454 and Illumina sequencers with enhanced base-calling accuracy. To investigate specialized metabolite biosynthesis in non-model plants we have established a data-mining framework, employing next-generation sequencing and computational algorithms, to construct and analyze the transcriptomes of 75 non-model plants that produce compounds of interest for biotechnological applications. After sequence assembly an extensive annotation approach was applied to assign functional information to over 800,000 putative transcripts. The annotation is based on direct searches against public databases, including RefSeq and InterPro. Gene Ontology (GO), Enzyme Commission (EC) annotations and associated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps are also collected. As a proof-of-concept, the selection of biosynthetic gene candidates associated with six specialized metabolic pathways is described. A web-based BLAST server has been established to allow public access to assembled transcriptome databases for all 75 plant species of the PhytoMetaSyn Project (www.phytometasyn.ca).


Subject(s)
Computational Biology , Databases, Genetic , Gene Expression Profiling , Metabolic Networks and Pathways/genetics , Plants/genetics , Plants/metabolism , Transcriptome , Algorithms , Biotechnology/methods , Data Mining/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Phylogeny , Sequence Alignment , Sequence Analysis
18.
Planta ; 237(3): 731-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23117394

ABSTRACT

Cuticular waxes coat the primary aerial tissues of land plants and serve as a protective barrier against non-stomatal water loss and various environmental stresses. Alkanes are the most prominent cuticular wax components and are thought to have an important role in controlling permeability of the cuticle. However, alkane biosynthesis in plants is not well understood. Arabidopsis eceriferum1 (cer1) and cer22 mutants show dramatic reductions in alkane, secondary alcohol, and ketone content, and concomitant increases in aldehyde content, suggesting that one or both of these genes encode an alkane-forming enzyme. To determine the biochemical identity of CER22, and to investigate the relationship between CER1 and CER22 in alkane formation, we mapped the cer22 mutation as a first step to positional cloning. Unexpectedly, mapping revealed linkage of cer22 to markers on chromosome 1 in the vicinity of CER1, and not to markers on chromosome 3 as previously reported. Failure of the cer1-1 and cer22 mutants to complement each other, and the presence of an allele specific mutation in the CER1 gene amplified from cer22 genomic DNA demonstrated that CER22 is identical to CER1. The cer22 mutant was therefore renamed cer1-6. Analyses of CER1 transcript levels, and stem cuticular wax load and composition in the cer1-6 (cer22) line indicated that cer1-6 is a weak mutant allele of CER1. This represents an important step forward in our understanding of alkane synthesis in plants, and will direct future research in the field to focus on the role of CER1 in this process.


Subject(s)
Alkanes/metabolism , Alleles , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Genes, Plant/genetics , Plant Epidermis/metabolism , Waxes/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chromosomes, Plant/metabolism , Gene Expression Regulation, Plant , Genetic Complementation Test , Mutation/genetics , Physical Chromosome Mapping , Plant Stems/metabolism
19.
Plant Physiol ; 160(3): 1164-74, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22930748

ABSTRACT

Primary aerial surfaces of land plants are coated by a lipidic cuticle, which forms a barrier against transpirational water loss and protects the plant from diverse stresses. Four enzymes of a fatty acid elongase complex are required for the synthesis of very-long-chain fatty acid (VLCFA) precursors of cuticular waxes. Fatty acid elongase substrate specificity is determined by a condensing enzyme that catalyzes the first reaction carried out by the complex. In Arabidopsis (Arabidopsis thaliana), characterized condensing enzymes involved in wax synthesis can only elongate VLCFAs up to 28 carbons (C28) in length, despite the predominance of C29 to C31 monomers in Arabidopsis stem wax. This suggests additional proteins are required for elongation beyond C28. The wax-deficient mutant eceriferum2 (cer2) lacks waxes longer than C28, implying that CER2, a putative BAHD acyltransferase, is required for C28 elongation. Here, we characterize the cer2 mutant and demonstrate that green fluorescent protein-tagged CER2 localizes to the endoplasmic reticulum, the site of VLCFA biosynthesis. We use site-directed mutagenesis to show that the classification of CER2 as a BAHD acyltransferase based on sequence homology does not fit with CER2 catalytic activity. Finally, we provide evidence for the function of CER2 in C28 elongation by an assay in yeast (Saccharomyces cerevisiae).


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Fatty Acids/metabolism , Acyltransferases/chemistry , Acyltransferases/genetics , Acyltransferases/metabolism , Amino Acid Motifs , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Base Sequence , Biocatalysis , Endoplasmic Reticulum/enzymology , Gene Expression Regulation, Plant , Green Fluorescent Proteins/metabolism , Molecular Sequence Data , Mutation/genetics , Organ Specificity , Phenotype , Plant Epidermis/enzymology , Plant Leaves/enzymology , Plant Stems/ultrastructure , Protein Transport , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid , Waxes/metabolism
20.
FEBS J ; 279(17): 3136-46, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22776156

ABSTRACT

Valerian (Valeriana officinalis) is a popular medicinal plant in North America and Europe. Its root extract is commonly used as a mild sedative and anxiolytic. Among dozens of chemical constituents (e.g. alkaloids, iridoids, flavonoids, and terpenoids) found in valerian root, valerena-4,7(11)-diene and valerenic acid (C15 sesquiterpenoid) have been suggested as the active ingredients responsible for the sedative effect. However, the biosynthesis of the valerena-4,7(11)-diene hydrocarbon skeleton in valerian remains unknown to date. To identify the responsible terpene synthase, next-generation sequencing (Roche 454 pyrosequencing) was used to generate ∼ 1 million transcript reads from valerian root. From the assembled transcripts, two sesquiterpene synthases were identified (VoTPS1 and VoTPS2), both of which showed predominant expression patterns in root. Transgenic yeast expressing VoTPS1 and VoTPS2 produced germacrene C/germacrene D and valerena-4,7(11)-diene, respectively, as major terpene products. Purified VoTPS1 and VoTPS2 recombinant enzymes confirmed these activities in vitro, with competent kinetic properties (K(m) of ∼ 10 µm and k(cat) of 0.01 s(-1) for both enzymes). The structure of the valerena-4,7(11)-diene produced from the yeast expressing VoTPS2 was further substantiated by (13) C-NMR and GC-MS in comparison with the synthetic standard. This study demonstrates an integrative approach involving next-generation sequencing and metabolically engineered microbes to expand our knowledge of terpenoid diversity in medicinal plants.


Subject(s)
Sesquiterpenes/metabolism , Valerian/enzymology , Base Sequence , Cyclization , DNA Primers , DNA, Complementary , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...