Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Genet ; 105(5): 510-522, 2024 05.
Article in English | MEDLINE | ID: mdl-38221827

ABSTRACT

Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of epilepsies characterized by early-onset, refractory seizures associated with developmental regression or impairment, with a heterogeneous genetic landscape including genes implicated in various pathways and mechanisms. We retrospectively studied the clinical and genetic data of patients with genetic DEE who presented at two tertiary centers in Egypt over a 10-year period. Exome sequencing was used for genetic testing. We report 74 patients from 63 unrelated Egyptian families, with a high rate of consanguinity (58%). The most common seizure type was generalized tonic-clonic (58%) and multiple seizure types were common (55%). The most common epilepsy syndrome was early infantile DEE (50%). All patients showed variable degrees of developmental impairment. Microcephaly, hypotonia, ophthalmological involvement and neuroimaging abnormalities were common. Eighteen novel variants were identified and the phenotypes of five DEE genes were expanded with novel phenotype-genotype associations. Obtaining a genetic diagnosis had implications on epilepsy management in 17 patients with variants in 12 genes. In this study, we expand the phenotype and genotype spectrum of DEE in a large single ethnic cohort of patients. Reaching a genetic diagnosis guided precision management of epilepsy in a significant proportion of patients.


Subject(s)
Epilepsy, Generalized , Epilepsy , Child , Humans , Egypt/epidemiology , Retrospective Studies , Epilepsy/diagnosis , Seizures/genetics , Seizures/complications , Phenotype
2.
Mitochondrion ; 65: 139-144, 2022 07.
Article in English | MEDLINE | ID: mdl-35750291

ABSTRACT

Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of rare autosomal recessive genetic disorders characterized by a decrease in the number of mtDNA copies inside the organ involved. There are three distinct forms of MDS including the hepatocerebral, the myopathic and the encephalomyopathic forms. The diversity in the clinical and genetic spectrum of these disorders makes the diagnosis challenging. Here, we describe the clinical phenotype and the genetic spectrum of 6 patients with MDS including 4 novel variants and compare them with previously reported cases. SUBJECT AND METHODS: Six patients from six unrelated families were included in this study. All the patients were subjected to a detailed history, thorough general and neurologic examination, basic laboratory investigations including lactic acid and ammonia, amino acids, acylcarnitine profiles and brain MRI. Whole-exome sequencing was performed for all of them to confirm the suspicion of mitochondrial disorder. RESULTS: In our series, four patients presented with the hepatocerebral form of MDS with the major presenting manifestation of progressive liver cell failure with severe hypotonia and global developmental delay. Four variants in the DGUOK gene and the MPV17 have been identified including 2 novel variants. One patient was identified in the myopathic form presenting with myopathy associated with two novel variants in the TK2 gene. One patient was diagnosed with encephalomyopathic form presenting with persistent lactic acidosis and global delay due to a homozygous variant in the FBXL4 gene. CONCLUSION: MDS has a wide spectrum of heterogeneous clinical presentations and about nine different genes involved. Whole exome sequencing (WES) has resulted in faster diagnosis of these challenging cases as the phenotype overlap with many other disorders. This should be considered the first-tier diagnostic test obviating the need for more invasive testing like muscle biopsies.


Subject(s)
Mitochondrial Diseases , Muscular Diseases , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mutation , Syndrome , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...